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Abstract
This paper proposes a deep learning model for speckle noise suppression in digital
images. The model consists of two interconnected networks: the first network
focuses on the initial suppression of speckle noise. The second network refines
these features, capturing more complex patterns, and preserving the texture details
of the input images. The performance of the proposed model is evaluated with
different backbones for the two networks: ResNet-18, ResNet-50, and SENet-154.
Experimental results on two datasets, the Boss steganography, and COVIDx CXR-
3, demonstrate that the proposed method yields competitive despeckling results.
The proposed model with the SENet-154 encoder achieves PSNR and SNR values
higher than 37 dB with the two datasets and outperforms other state-of-the-art
methods (Pixel2Pixel, DiscoGAN, and BicycleGAN).
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1 Introduction

The quality of digital images may degrade due to
speckle noise (salt-and-pepper noise), caused by var-
ious factors during image acquisition and transmis-
sion. Speckle noise can be present in a variety of
digital images from different domains, including the
medical imaging domain (X-ray, ultrasound, magnetic
resonance imaging (MRI)), and the remote sensing do-
main (e.g., satellite images). In such images, speckle
noise manifests as pixels with low and high intensity
distributed at random locations. Various speckle noise
suppression techniques have been proposed in the lit-
erature to effectively remove speckle noise and enhance
the analysis of medical and remote sensing images, such
as synthetic aperture radar (SAR) images [1].

The techniques for reducing speckle noise include
both traditional and deep learning-based methods.
Traditional methods involve the use of filtering tech-
niques in both spatial and spectral domains. Common
filtering techniques include median filters, Wiener fil-
ters, and wavelet-based filters [12]. On the other hand,
numerous deep learning-based methods have been pro-
posed for effectively suppressing speckle noise in dig-
ital images [11, 6]. The study presented in [1] con-
cluded that deep learning-based speckle noise suppres-
sion methods outperform traditional methods.

In recent years, various deep learning-based meth-
ods have been proposed for speckle noise suppression
in digital images. For example, in [4], Karaoğlu et al.
conducted a comparative analysis of five deep learn-
ing models to suppress speckle noise in ultrasound im-
ages. The evaluated models include CNN Residual
Network, Dilated Convolution Autoencoder Denoising

Network (D-U-NET), Generative Adversarial Denois-
ing Network (DGAN-Net), Denoising U-Shaped Net,
and BatchRenormalization U-Net. According to the
study findings, the most effective results were achieved
by D-U-NET and DGAN-Net, exhibiting a peak signal-
to-noise ratio (PSNR) exceeding 33 dB and a structural
similarity index (SSIM) surpassing 0.98.

Furthermore, Wen et al. [14] introduced a self-
attention multi-scale convolutional neural network
named SAMSCNN to mitigate speckle noise in SAR
images. Simulation results demonstrated that SAM-
SCNN achieves an average PSNR of less than 28 dB
and an average SSIM of less than 0.9. There is still
room for improvement in the PSNR and SSIM results
of existing speckle noise reduction methods.

This paper introduces a deep learning-based model
for speckle noise reduction in digital images. The
proposed model comprises two interconnected autoen-
coder networks. The first autoencoder network fo-
cuses on the initial suppression of speckle noise, ex-
tracting low-level features from the input images. The
second autoencoder then refines these features, cap-
turing more complex patterns and preserving crucial
texture details. This hierarchical approach allows the
model to learn both global and fine-grained features in
a step-wise manner, enhancing its ability to discrimi-
nate between noise and meaningful image structures.
The performance of the proposed method is assessed
with different backbones for the autoencoder networks:
ResNet-18, ResNet-50, and SENet-154. The method is
evaluated on two datasets, including medical and real-
world digital images (Boss steganography and COVIDx
CXR-3). Quantitative results demonstrate that the
proposed method achieves effective speckle noise re-
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duction, as indicated by five different metrics: Mean
Absolute Error (MAE), Mean Squared Error (MSE),
PSNR, Signal-to-Noise Ratio (SNR), and Perceptual
Average Mean Squared Error (PAMSE). Qualitative
results are also provided to illustrate that the proposed
method maintains a balance between speckle noise re-
duction and preserving the texture details of the digital
images.

The other sections of this paper include the problem
formulation (Section 2), the proposed method (Section
3), the results and discussion (Section 4), and the con-
clusion and future work (Section 5).

2 Problem Formulation

Consider X ∈ X as the input digital image, and Y ∈ Y
as the corresponding cleaned image (despeckled im-
age). The problem of speckle noise suppression in
digital images can be formally defined as a function
f : X → Y that maps elements from the domain X
(images having speckle noise) to elements in its co-
domain Y (i.e., despeckled image or cleaned images).
This study introduces a deep learning-based system to
address this problem.

Specifically, the proposed system comprises two se-
quential yet interconnected autoencoder networks, de-
noted as Ns(X) and Nc(Ŷ ), where Ŷ represents the
predicted image (or cleaned image) generated by Ns.
The operation of the proposed model can be expressed
as follows:

X̂ = Ns(X), (1)

Ŷ = Nc(X̂), (2)

In these expressions, X is the input image, X̂ is the
filtered image given by the first autoencoder network,
NθX , and Ŷ is the refined despeckled image produced
by the second network NθY .

Loss functions are employed to compare the digi-
tal image reconstructed by Ns(X) and Nc(Ŷ ) with the
ground truth. This loss function quantifies the dis-
crepancy between the predicted image and the ground
truth image, enabling the training process to minimize
this discrepancy.

3 Proposed Method

Figure 1 illustrates the main components of the pro-
posed speckle noise reduction model, consisting of two
sequential yet interconnected autoencoder networks.
Such two-stage architecture enables multi-stage refine-
ment of the denoising process. The initial denoising
in the first network provides an initial despeckled im-
age, which serves as a more informative input for the
subsequent network. The second network can then fo-
cus on further refining the despeckling results based
on the already improved representation, contributing
to the preservation of finer details and avoiding over-
smoothing.

During the training process, the predicted digital im-
age from the first network is fed into the second net-
work. The second network focuses on removing more
challenging noise from the initially predicted image and
enhancing the texture details of the images. To facil-
itate learning and establish relationships between the
input and output domains, two loss functions are uti-
lized for each network within the proposed model.

In this study, we adopt the concept of speckle noise
reduction as an image-to-image translation task, as
proposed in [5, 17]. The method proposed in [17] in-
volves two generators and one discriminator, while the
method proposed in [5] employs two generators and two
discriminators. In the proposed model, we employ two
networks with two loss functions to suppress speckle
noise in digital images.

Indeed, the proposed method offers several advan-
tages over single-stage speckle noise suppression meth-
ods. Firstly, the proposed method enables more effi-
cient training of the networks. The first network can
be trained on a large dataset of noisy images, while the
second network can be trained on a smaller dataset of
images that have already been denoised by the global
network. Secondly, it facilitates superior noise removal
performance, with the first network effectively remov-
ing most of the simple noise from the image, and the
second network further addressing any remaining chal-
lenging noise. Lastly, the proposed method is more
versatile and applicable to a broader range of image
denoising tasks. For instance, the proposed two-stage
approach can be employed to denoise images affected
by various types of noise, including Gaussian noise,
salt-and-pepper noise, and speckle noise.

3.1 Model Architecture

This subsection details the architecture of both the first
network, Ns(X), and the second network, Nc(Ŷ ), both
of which share an identical structure. The two net-
works comprise encoder and decoder layers. The en-
coder network’s role is to extract features from the in-
put digital image using convolutional filters with down-
sampling. Conversely, the decoder network employs
deconvolution filters to up-sample the feature maps, ul-
timately generating a speckle noise-free digital image.
Skip connections are incorporated to preserve spatial
information and anatomical structures within the im-
ages.

The decoder of each network has four convolutional
layers, while the decoder of each network has four de-
convolution layers. Spatial filters in each convolution
and deconvolution layer have a size of 3 × 3, facili-
tating down-sampling and up-sampling of the feature
maps with a stride of 2× 2. Batch normalization (BN)
is applied after each deconvolutional layer, and the
LeakyReLU activation function with a slope of 0.2 is
employed at the end of each deconvolutional layer. The
Tanh activation function is utilized in the last convo-
lutional layer of the encoder, while the sigmoid activa-
tion function is applied in the last layer of the decoder.
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Figure 1: The main components of the proposed speckle noise suppression model.

3.2 Loss Function

In this study, we employ two loss functions to evalu-
ate the network’s performance in the training process
with respect to the structural similarity between the
predicted image (cleaned image) and the ground truth
image. The first loss function is the mean square error
(MSE) loss, which measures the average squared dif-
ference between the ground truth image GT1i (ground
truth 1) and the image generated by the first network,
X̂. The MSE loss function can be defined as follows:

LMSE(GT1, Ŷ ) =
1

n

n∑
i=1

(GT1i − X̂i)
2, (3)

The second loss function utilized in the training pro-
cess is the L1 loss, also known as the absolute error.
This loss calculates the mean of the absolute differences
between the true values and the predicted values. The
goal is to minimize the error by reducing the sum of
these absolute differences between the ground truth im-
age GT2i (ground truth 2) and the image generated by
the second network, Ŷ . The L1 loss can be expressed
as follows:

LL1(GT2, Ŷ ) =
n∑

i=1

|GT2i − Ŷi|, (4)

The overall loss function L(GT, Ŷ ) of the proposed
method can be expressed as follows:

L(GT, Ŷ ) = αLMSE + (1− α)LL1, (5)

where α is a hyperparameter weighting the importance
of the training loss functions. In our experiments, we
empirically set α = 0.4.

3.3 Generating Ground Truth

In this study, we implement a training approach for the
first network, Ns(X), by generating ground truth sam-
ples (GT1). Speckle noise is introduced to the original
ground truth in the training datasets. Examples of the
generated ground truth images from the datasets used
in our study are illustrated in Figure 2 and Figure 3.
The first row displays the input noisy images, the sec-
ond row shows the synthesized ground truth images
(GT1), and the third row presents the actual ground
truth images (i.e., GT2).

Figure 2: Examples from the Boss steganography
dataset: For each image, Row 1 displays the input
noisy images, Row 2 presents the synthesized ground
truth images (GT1), and Row 3 shows the actual
ground truth images (i.e., GT2).
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Figure 3: Examples from the COVIDx CXR-3 dataset:
For each image, Row 1 displays the input noisy images,
Row 2 presents the synthesized ground truth images
(GT1), and Row 3 shows the actual ground truth im-
ages (i.e., GT2).

3.4 Evaluation Metrics

Five evaluation metrics are used in this study to eval-
uate the proposed speckle noise reduction method:
Mean Absolute Error (MAE) [15], Mean Squared
Error (MSE) [7], PSNR [2], Signal-to-Noise Ratio
(SNR) [13], and Perceptual Average Mean Squared Er-
ror (PAMSE) [16].

MAE =
1

n

n∑
i=1

∣∣∣GT(i) − Ŷ(i)

∣∣∣ , (6)

MSE =
1

n

n∑
i=1

(
GT(i) − Ŷ(i)

)2
, (7)

PSNR = 20 · log10

(
max(max(Ŷ ))

(PSNRMSE)0.5

)
, (8)

PSNRMSE =
1

m · n

m−1∑
i=0

n−1∑
j=0

∥∥∥GT (i, j)− Ŷ (i, j)
∥∥∥2 ,
(9)

SNR = 100 · log10
(

α2

αc2

)
, (10)

PAMSE(X, Ŷ ) =
1

n

∥∥∥h⊗ (X, Ŷ )
∥∥∥2 , (11)

In these expressions, n stands for the total number
of images. In (6), (7), (8), and (9), GT represents
the ground truth image, and Ŷ is the corresponding
despeckled image produced by the proposed model. In
equation (10), α2 represents the variance of the input
image, and αc2 stands for the variance of the predicted
image. In (11), ⊗ stands for the convolution operator.

4 Experiments and Results

This section provides a description of the experiments
conducted to evaluate the proposed model, including
details about the datasets used and the evaluation met-
rics employed in the experiments.

4.1 Datasets

A series of experiments were conducted to assess the
performance of the proposed model on two datasets,
including both real-world and medical images. The
two datasets are the Boss steganography dataset and
the COVIDx CXR-3 dataset.

The Boss steganography dataset 1 comprises 3000
images. The dataset was randomly partitioned: 80%
for training and 20% for testing. All images were re-
sized from 512× 512 to 320× 320.

The COVIDx CXR-3 dataset [9] is a large-scale
benchmark dataset for CXR (Chest X-Ray) images.
The dataset comprises 30,386 CXR images obtained
from a multinational cohort of 17,026 patients from
at least 51 countries. It consists of 29,986 images for
the training set and 400 images for the testing set. In
our experiments, all images in COVIDx CXR-3 were
resized from 1024× 1024 to 320× 320.

4.2 Parameter Settings

During training, we employed the Adam optimizer with
β1 = 0.5, β2 = 0.999, and an initial learning rate of
0.0001. The optimal combination of parameters was
achieved with a batch size of 2 and 100 epochs.

All experiments were conducted on a system with a
64-bit Core i7-6700, 3.40GHz CPU, 16GB of memory,
and an NVIDIA GTX 1080 GPU. We used the Ubuntu
16.04 operating system and the PyTorch deep learning
framework [8]. The training process of the proposed
method required approximately 20 minutes per epoch
with a batch size of 2, and the online prediction time
averaged around 0.0198 seconds.

The implementation of the proposed method
will be available at https://github.com/egnaser/

Speckle-Noise-Suppression-MENDEL.

4.3 Results and Discussion

First, we investigate the impact of different loss func-
tions on the performance of the proposed speckle noise
reduction model. Three loss combinations are studied:
MSE, L1, and MSE+L1. In the first loss combination,
MSE is used as a loss function for both Network 1 and
Network 2 of the proposed model. In the second loss
combination, L1 is used as a loss function for both net-
works. In the third loss combination, MSE is used for
Network 1, and L1 is used for Network 2. In these
experiments, the SENet-154 encoder was employed in
both networks. As presented in Table 1, the first loss

1https://rb.gy/hcpaoc

DRAFT

https://github.com/egnaser/Speckle-Noise-Suppression-MENDEL
https://github.com/egnaser/Speckle-Noise-Suppression-MENDEL


Table 1: Analyzing the performance of the proposed model with different loss functions.

Loss MAE ↓ MSE ↓ SNR ↑ PSNR ↑ PAMSE ↑
MSE 0.046551 0.002167 33.19± 3.7 36.05± 1.5 0.129648
L1 0.0497795 00.002478 33.32± 4.6 35.79± 1.7 0.130156

MSE + L1 0.0404104 0.001633 33.97± 3.1 36.57± 1.1 0.132695

combination, MSE, outperforms the second loss com-
bination in terms of the five evaluation metrics. The
best performance is achieved with the MSE+L1 loss
combination, yielding a PSNR of 36.57± 1.1.

Second, we explore the performance of the proposed
model with different encoder networks: ResNet-18,
ResNet-50, SENet-154. We also compare the pro-
posed model’s performance with three state-of-the-art
deep learning architectures: Pixel2Pixel [3], Disco-
GAN [5], and BicycleGAN [18]. These three methods
were trained to suppress speckle noise using the same
datasets used to train the proposed model (the Boss
steganography and COVIDx CXR-3 datasets).

Table 2 presents the performance of the proposed
model with the ResNet-18 encoder. It is essential
to note that the same ResNet-18 encoder is used in
all models presented in this table. With the Boss
steganography dataset, the proposed model obtains
SNR and PSNR values higher than 36 dB. Pixel2Pixel
and BicycleGAN models yield lower results with SNR
values less than 27 dB. DiscoGAN produces a MAE
of 0.132, significantly higher than that of the proposed
model. With the COVIDx CXR-3 dataset, the pro-
posed model achieves a PSNR of 37.87±0.1, surpassing
the other three models.

Table 3 presents the performance of the proposed
model with the ResNet-50 encoder, also used in other
models. With both datasets, the proposed model
achieves MAE values less than 0.08 and PSNR values
higher than 37 dB. The MAE of DiscoGAN and Bi-
cycleGAN models is higher than that of other models.
Pixel2Pixel obtains the lowest SNR values with both
datasets.

As shown in Table 4, the proposed model with the
SENet-154 encoder achieves PSNR and SNR values
higher than 37 dB with the two datasets. The proposed
model has an MSE error of 0.000965, significantly lower
than those of Pixel2Pixel, DiscoGAN, and BicycleGAN
models.

Tables 2, 3, 4 indicate that the SENet-154 encoder
yields the best results with the Boss steganography
and COVIDx CXR-3 datasets. Moreover, the pro-
posed model with the SENet-154 encoder outperforms
the other compared methods (Pixel2Pixel [3], Disco-
GAN [5], and BicycleGAN [18]) using the same set-
tings.

Figure 4 illustrates the despeckling results of the first
network in the proposed model (i.e., network1) and the
final despeckled images provided by the second network
(i.e., network2). All examples are randomly picked up
from the Boss steganography dataset. Despite the in-
put images exhibiting dense speckle noise, the despeck-

ling results of the first network in the proposed model
(column 3) closely approximate the ground truth im-
ages. Notably, the proposed model produces final de-
speckling images (column 4) that preserve the disconti-
nuities and small details of the objects, closely aligning
with the ground truth images. This demonstrates that
the two-stage architecture is more adaptable to differ-
ent types and levels of noise. The first network can
specialize in handling specific characteristics of noise,
while the second network can adapt to the specific noise
characteristics that may persist after the initial denois-
ing stage.

For a qualitative assessment of the Boss steganogra-
phy dataset, Figure 5 showcases the predicted images
generated by the proposed model using the SENet-
154 encoder alongside three state-of-the-art methods
(Pixel2Pixel [3], DiscoGAN [5], and BicycleGAN [18]).
It is evident that our proposed model excels in produc-
ing more accurate despeckled images compared to the
other models.

5 Conclusion

This study has introduced a deep learning-based model
designed for speckle noise reduction in digital im-
ages, utilizing two interconnected autoencoder net-
works. The first network focuses on suppressing
speckle noise, while the subsequent network refines
despeckling results, preserving essential texture de-
tails in the input images. Evaluations were con-
ducted on two diverse datasets, encompassing medical
and real-world digital images (Boss steganography and
COVIDx CXR-3). Various combinations of loss func-
tions and backbone encoders (ResNet-18, ResNet-50,
and SENet-154) were explored for the two networks.
The results demonstrate that SENet-154, combined
with the MSE+L1 loss, yields the most effective de-
speckling outcomes. The proposed model consistently
achieves PSNR and SNR values exceeding 37 dB with
the two datasets, outperforming other state-of-the-art
deep learning architectures trained for despeckling dig-
ital images (Pixel2Pixel, DiscoGAN, and BicycleGAN)
with an MSE lower than 0.001. Qualitative assess-
ments highlight the proposed method’s ability to main-
tain the balance between speckle noise reduction and
preserving crucial texture details in digital images.

Future work will involve exploring additional re-
finements for the proposed speckle noise suppression
method, assessing its scalability to larger datasets,
and considering potential adaptations for real-time im-
age despeckling.Additionally, the proposed method will
incorporate the pointwise convolutions with parallel
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Table 2: Quantitative results of the proposed model with the ResNet-18 encoder and the three state-of-art
methods (Pixel2Pixel [3], DiscoGAN [5], and BicycleGAN [18]).

Dataset Methods MAE ↓ MSE ↓ PSNR ↑ SNR ↑ PAMSE ↑

Boss
steganography

Pixel2Pixel [3] 0.0963327 0.00928 36.31± 1.3 26.3± 9.0 0.14183
DiscoGAN [5] 0.1327026 0.01761 36.31± 1.3 35.66± 1.8 0.14183
BicycleGAN [18] 0.1458423 0.02127 34.62± 2.6 26.95± 8.5 0.13523
Proposed 0.086133 0.007387 36.83± 0.9 36.31± 1.3 0.14386

COVIDx
CXR-3

Pixel2Pixel [3] 0.0766159 0.00965 36.83± 0.9 27.6± 8.0 0.14386
DiscoGAN [5] 0.0992673 0.009854 36.83± 0.9 36.7± 1.0 0.14386
BicycleGAN [18] 0.0993478 0.00987 37.74± 0.2 28.38± 7.4 0.14742
Proposed 0.083366 0.00587 37.87± 0.1 36.83± 0.9 0.14792

Table 3: Quantitative results of the proposed model with the ResNet-50 encoder and the three state-of-art
methods (Pixel2Pixel [3], DiscoGAN [5], and BicycleGAN [18]).

Dataset Methods MAE ↓ MSE ↓ PSNR ↑ SNR ↑ PAMSE ↑

Boss
steganography

Pixel2Pixel [3] 0.093359 0.008716 37.09± 0.7 26.04± 9.2 0.14488
DiscoGAN [5] 0.101079 0.010217 36.83± 0.9 36.7± 1.0 0.14386
BicycleGAN [18] 0.111085 0.012340 37.09± 0.7 37.09± 0.7 0.14488
Proposed 0.073212 0.005360 37.87± 0.1 37.22± 0.6 0.14792

COVIDx
CXR-3

Pixel2Pixel [3] 0.084409 0.007125 37.22± 0.6 28.51± 7.3 0.14539
DiscoGAN [5] 0.092412 0.00854 36.96± 0.8 36.83± 0.9 0.14437
BicycleGAN [18] 0.0978263 0.00957 37.09± 0.7 37.22± 0.6 0.14488
Proposed 0.0621128 0.003858 37.35± 0.5 37.48± 0.4 0.14589

Table 4: Quantitative results of the proposed model with the SENet-154 encoder and the three state-of-art
methods (Pixel2Pixel [3], DiscoGAN [5], and BicycleGAN [18]).

Dataset Methods MAE ↓ MSE ↓ PSNR ↑ SNR ↑ PAMSE ↑

Boss
steganography

Pixel2Pixel [3] 0.063576 0.004042 37.48± 0.4 37.74± 0.2 0.14640
DiscoGAN [5] 0.094398 0.008911 37.61± 0.3 37.87± 0.1 0.146914
BicycleGAN [18] 0.1763065 0.031084 37.48± 0.4 37.74± 0.2 0.146406
Proposed 0.04041 0.001633 37.61± 0.3 37.87± 0.1 0.146914

COVIDx
CXR-3

Pixel2Pixel [3] 0.0507937 0.00258 37.74± 0.2 37.87± 0.1 0.147426
DiscoGAN [5] 0.08655 0.007491 37.74± 0.2 37.87± 0.1 0.147421
BicycleGAN [18] 0.124442 0.015486 37.74± 0.2 37.74± 0.2 0.147422
Proposed 0.0310644 0.000965 37.74± 0.2 37.87± 0.1 0.147428

branching approach suggested in [10] to further en-
hance the results of speckle noise suppression.
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