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Abstract
The Black-Scholes (BS) equation, which has the form of a partial differential
equation, is a fundamental equation in mathematical finance, especially for option
pricing. Even though there exists an analytical solution of the standard form, it
is not straightforward to solve the equation numerically. An effective and efficient
numerical method will be useful to solve advanced and non-standard forms of the
BS equation in the future. In this paper, we propose a method to solve BS equa-
tions using a metaheuristic optimization algorithm to find the best approximate
solution. Here we propose the Adaptive Differential Evolution with Learning Pa-
rameter (ADELP) algorithm. The BS equations being solved are meant to find
values of European option pricing equipped with barrier option. The results of our
approximation method fit well with the analytical approximation solutions.

Keywords: Adaptive differential evolution, Approximation solution, Black-
Scholes, Metaheuristic optimization, Partial differential equations.

Received: 16 October 2022
Accepted: 13 December 2022

Online: 14 December 2022
Published: 20 December 2022

1 Introduction

In asset trading activities such as stock trading, options
offer a guarantee for investors to avoid large losses.
Black and Scholes [3] together with Merton [19] revo-
lutionized financial markets by introducing the Black-
Scholes (BS) equation also known as the Black-Scholes-
Merton (BSM) equation. The BS equation, which is in
the form of a partial differential equation, provided a
new approach to calculating financial market options.

Many different numerical calculations have been
used to solve the BS equation, especially finite differ-
ence methods. For example, Jeong et al. [14] pro-
posed a finite difference method for solving the BS
equation without boundary conditions. Kim et al. [17]
used a nonuniform finite difference method for three-
dimensional (3D) time-fractional BS equations. He
and Zhang [11] proposed the Fractional Black–Scholes
Model (FBSM) of option pricing in a fractal transmis-
sion system. Gulen et al. [10] proposed the discrete be-
havior of linear and nonlinear BS European option pric-
ing models using a sixth-order finite difference (FD6)
scheme and a third-order stability.

In this paper, we present an approximation solution
to the BS partial differential equation (PDE) using a
metaheuristic optimization method, which is the nov-
elty of this study, as it is a mesh-free approach. This
is based on Chen and Lee [6], who introduced solving
the BS equation with a metaheuristic approach using
genetic algorithms. Further, we present the solution
of BS equations with a trial solution, building on the
concept from Khan et al. [16] and Eskiizmirliler et al.
[7].

The contribution of this study is to confirm the pro-
posed method for option pricing, especially for bar-
rier option pricing. We use the proposed optimization
method to approximate the solution of the BS PDE to
determine the option pricing and the BS PDE equipped
with barrier option pricing. First, we change the BS
PDE into an optimization problem using a residual
method. Before using this residual method to solve
the BS PDE, we use this method to solve an ordinary
differential equation (ODE) as presented in Febrianti
et al. [8] and Febrianti et al. [9]. This method was
inspired by Babaei [1] and Sadollah et al. [22], who
used a weighted residual method to solve ODEs. Cha-
quet et al. [5] and Panagant et al. [21] solved the PDE
using a weighted residual method. Their approach is
used here to approximate the solution of the BS PDE
with a novel metaheuristic optimization method, called
Adaptive Differential Evolution with Learning Parame-
ter (ADELP). The results of the approximate solution
of the BS PDE are then compared with the analyti-
cal approximation solution as a form of validation of
the performance of the proposed method. Finally, the
residual method and the ADELP algorithm are used
to calculate the approximate solution of the BS PDE
for barrier option pricing.

Barrier option pricing is an exotic option that de-
pends on the path-line movement of stock prices in
the financial market. The cheapness and marketabil-
ity it offers investors has made it more popular than
other exotic options. Another advantage is that it is
more flexible than hedging and speculation. Specula-
tors can choose a variety of barrier options that can
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help them to monitor possible asset price movement,
which in turn, reduces potential losses [24]. The payoff
of barrier options depends on the specified barrier level
that can be reached by the underlying asset price.
Generally, barrier options are classified either as

knock-in options, i.e., the barrier option is activated
once the underlying price reaches the barrier level,
or knock-out options, i.e., the barrier option is extin-
guished if the barrier is reached [24]. Barrier option
pricing can be calculated using a binomial method,
Monte-Carlo simulation, or a BS PDE. In this paper,
we focus on a Black-Scholes PDE equipped with bar-
rier option pricing.Previous studies mostly used finite
difference methods to approximate BS PDEs equipped
with barrier option pricing, for example, [4, 13, 25].
Babasola, et al. [2] used the Crack-Nicolson approach
for the valuation of barrier options.
This paper consists of five sections. The first sec-

tion is the introduction. The second section introduces
the trial solution for the BS equation using the neural
network concept and a model of the BS equation as
an optimization problem. In the third section, we de-
scribe the Adaptive Differential Evolution algorithm.
The fourth section presents the results and their dis-
cussion, and the fifth section contains the conclusion.

2 Neural Network Model for Solving the
Black-Scholes Equation

When using optimization to solve differential equa-
tions, a trial solution is needed, which can be a series
with unknown series coefficients. This trial solution is
then substituted in the optimization form of the differ-
ential equation. This section discusses a trial solution
for the BS, applying the neural network concept and
modelling the Black-Scholes equation as an optimiza-
tion problem. The Black-Scholes differential equation
European call option is given as follows:

∂C

∂t
+

1

2
σ2S2 ∂

2C

∂S2
+ rS

∂C

∂S
− rC = 0

0 < S <∞, 0 < t < T

(1)

with the following final condition and boundary condi-
tions:

C(S, T ) = max{S(T )−K, 0}
C(0, t) = 0, for all 0 ≤ t ≤ T

C(S, t) ≈ S, for large S and 0 ≤ t ≤ T

(2)

where r and σ, are constants that state the volatility
and risk-free interest rate, respectively; C = C(S, t) is
the European call option pricing, whose value depends
on stock value S and time t; K is the strike price; and
T is the maturity time.
Based on the BS differential equation for the Euro-

pean call options (see Eq. 1), we can obtain an ap-
proximate analytical solution by transforming it into
the standard heat equation Cτ = Cxx using well-
known transformations of independent variables S =

Kexp(x), t = T − 2τ/σ2. The approximate analytical
solution of the BS problem (see Eq. 1) with boundary
conditions (see Eq. 2) is found as follows:

C(S, t) = SN(d1)−Ke−r(T−t)N(d2) (3)
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with N(x) being the normalized normal distribution
cumulative function.

2.1 Trial Solution of the Black-Scholes Equation
based on the Neural Network Concept

Based on Eskiizmirliler et al. [7], the function G(x)
is constructed from the final and boundary conditions
(see Eq. 2) such that in general we can write:

G(S, t) =
t

T
max{S(t)−K, 0} (5)

Eskiizmirliler et al. [7] used the activation function
NN(x, p) and a sigmoid-like function f(z) = 1/(1 +
exp(−z)) stated as follows:

NN(X, p) =
m∑
i=1

αi

1 + eµiS−ωit−βi
(6)

where X stands for the two PDE variables; p is the
unknown parameter vector to be determined; m is the
total number of neurons in the hidden layer of the neu-
ral network; αi is the synaptic weight of the i-th hidden
neuron of the output; µi is the synaptic coefficient from
the spatial inputs to the i-th hidden neuron; ωi is the
synaptic coefficient from the time input to the i-th hid-
den neuron; and βi is the bias value of the i-th hidden
neuron. Based on Eq. (6) and Eskiizmirliler et al. [7],
function F (X,NN(X, p)) is in the following form:

F (X,NN(X, p)) = S ·(T−t)·
m∑
i=1

αi

1 + eµiS−ωit−βi
(7)

Based on Eq. (5), Eq. (6) and Eq. (7), the trial
solution for Eq. (1) is given by Eq. (8):

Ctrial(S, t) =t/T ·max(S(t)−K, 0)+

S · (T − t) ·
m∑
i=1

αi

1 + eµiS−ωit−βi

(8)
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2.2 Solving the Black-Scholes Equation as an Op-
timization Problem

In the previous section, a trial solution for European
call options was derived as given in Eq. (1). If Eq. (9)
is substituted in Eq. (1), we get the following residual
equation:

Rn =
[∂Ctrial(S, t)

∂t
+

1

2
σ2S2 ∂

2Ctrial(S, t)

∂S2
+

rS
∂Ctrial(S, t)

∂S
− rCtrial(S, t)

]
t=tn,S=Sn

(9)

where we take 0 < S < ∞, and 0 ≤ t ≤ T . In general
R ̸= 0, but we can force R in Eq. (9) to approach
0, which can be satisfied when Ctrial ≈ C. To solve
this problem, we need to find the set of coefficients
{αi, µi, ωi, βi, | i = 1, . . . ,m} which minimizes:

NS ,Nt∑
nS ,nt=1

R2
n (10)

where NS = ((Smax − S0))/hS and Nt = T/ht , hS
is the step length of S and ht is the step length of t.
Therefore, we change the problem into an optimization
problem in the following way:

minimize

NS ,Nt∑
nS ,nt=1

R2
n (11)

subject to: [Ctrial(S, t)]t=T,S=Sn = max{S −K, 0}
[Ctrial(S, t)]t=tn,S=S0 = 0

(12)

Eq. (11) and Eq. (12) together are formulated as an
optimization problem with a boundary value problem
(BVP) (1)-(2). In Section 3, we discuss the optimiza-
tion algorithm used in this work for solving Eq. (11)
and Eq. (12), which is the Adaptive Differential Evo-
lution with Learning Parameter (ADELP) algorithm.

2.3 European Barrier Option Pricing

The payoff of barrier options depends on whether the
asset crosses a pre-defined barrier level. A down-and-
out call option has a payoff equal to zero when the asset
crosses some pre-defined barrier B < S0 at some time
in [0, T ] [12].

In the other condition, when the asset does not cross
the pre-defined barrier B < S0, the payoff becomes
equal to the European call option max{S(T )−K, 0}.
Let CB(S, t) denote the value of a down-and-out call

option at asset price S and time t. Then, the BS equa-
tion for European down-and-out options given as fol-
lows:
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0 < S <∞, 0 < t < T

(13)

with the following boundary and final conditions:

CB(B, t) = 0, 0,≤ t ≤ T

CB(S, T ) = max{S(T )−K, 0}, B ≤ S
(14)

The analytical approximation solution for the Euro-
pean down-and-out call in [12] is stated as follows:

CB(S, t) = C(S, t)−
(
S

B

)1− 2r
σ2

C

(
B2

S
, t

)
(15)

When the probability of hitting the barrier decreases,
the initial asset prices increase such that the European
barrier down-and-out call option value approaches the
value of European call options. Based on Eq. (5),
Eq. (6) and Eq. (7), we propose a trial solution to
approximate the value of the European down-and-out
barrier as in Eq. (16):

Ctrial(S, t) =t/T ·max(S(t)−K, 0)+

(S −B) · (T − t) ·
m∑
i=1

αi

1 + eµiS−ωit−βi

(16)

for S > B and S ≤ B, the value of CB
trial(S, t) = 0.

3 Adaptive Differential Evolution with
Learning Parameter

The Differential Evolution (DE) algorithm was first in-
troduced by Storn and Price [24]. DE is an evolution-
ary algorithm inspired by the genetic algorithm. DE
has a vector that distinguishes it from other algorithms
so that it robust in finding optimal solutions.

DE is a metaheuristic algorithm that is known for the
speed with which it finds the optimal solution. Gener-
ally, DE uses three different vectors in the optimization
process. One vector is called the base vector and the
other two vectors are called the difference vectors. The
process of updating individuals in DE is as follows: the
sum of the difference vectors is added to the base vec-
tor after multiplying the sum of the difference vectors
with the mutation scale (F). Panagant and Bureerat
[20] describe about DE in an oscillation equation where
the best value for the mutation scale is 0.5. Generally,
the mutation scale value in DE is chosen as a constant
value. However, if we think further, this mutation scale
factor (F) should be able to change to compensate for
shifts in the basis vector so that individual updates
always go to the best individual. In this paper, we
propose the following new mutation scheme:

vt(i,G+1) = xt(best,G) + w(xt(best,G) − xt(i,G)) (17)

where the parameter w is obtained with a learning
process that is similar to the process in the Neural
Network Algorithm (NNA) from Sadollah et al. [23].
NNA is packaged in such a way that the parameters
in it are able to adjust themselves. However, NNA
does not converge sufficiently in every program running
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Table 1: Parameter settings for NNA, DE and ADELP.

NNA Parameters DE Parameters ADELP Parameters
Beta = 1 F = 0.50 Cr = 0.90
Max Iteration = 1,000 Cr = 0.90 Max Iteration = 1,000
Population = 200 Max Iteration = 1,000 Population = 200

Population = 200

Table 2: RMSE for European call options with NNA, DE, and ADELP.

Type of errors Result NNA Result DE Result ADELP
RMSE 1.515e+01 6.770e-02 5.802e-02

NNA. Therefore, we propose the concept of a mutation
scheme with learning parameter w (related to the mu-
tation scale), so that we obtain a learning process that
is similar to that of the NNA. This learning parame-
ter can improve the mutation result compared to only
using the ordinary mutation scheme.
Next, the crossover constant (Cr) is chosen large

enough (close to 1) to enable a comparison between
the results of the previous population and the current
one. Then, we use the root mean square error (RMSE)
in order to do performance analysis with the following
equation:

||V − ψ||RMSE =
(

1
NS×Nt

∑NS

i=1

∑Nt

j=1 |V (Si, tj)− ψ(Si, tj)|2
) 1

2

(18)

4 Results

In this section, we approximate the BS solution for Eu-
ropean call options using ADELP. The algorithm uses
a population size of 200 and the maximum number of
iterations in these computations is 1,000. All computa-
tions are run with MATLAB R2018a on an HP Pavil-
ion laptop, model 14-dv0067TX equipped with an Intel
Core TM i7 processor (4.70 GHz) and 8 GB RAM, run-
ning Windows 10.
We use the example data from [12]. We consider the

value of a call option with strike price K = 4. The
risk-free interest rate per year is 3% continuously com-
pounded, so r = 0.03. The time to expiration is T = 1
measured in years, and the volatility, the standard de-
viation per year on the return of the stock, is σ = 0.3.
The value of the call option at maturity is plotted over
the range of stock prices 0 ≤ S ≤ 10. First, we calcu-
late the European call option without barrier, then we
calculate European call option with a barrier equal to
2.

4.1 European Call Option

In this subsection, we show the result for the Euro-
pean call option using three different optimization al-
gorithms. The first one uses the DE algorithm, the
second one uses NNA, and the third one uses ADELP.
The parameter settings for DE, NNA, and ADELP are
shown in Table 1. The results of the approximation
solution are shown in Table 2. The surface of each

Figure 1: Surface comparison of the approximation so-
lutions of the Black-Scholes equation for European call
options from ADELP, DE, and NNA with the analyt-
ical approximation solution.

Figure 2: Graph comparison of the approximation so-
lutions of the Black-Scholes equation for European call
options from ADELP, DE, and NNA with the analyt-
ical approximation solution along with a graph of the
best cost value with the best iterations.

problem is shown in Fig. 1 and a graph of each prob-
lem shows in Fig. 2.

Based on the results in Table 2, the RMSE of the
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Table 3: RMSE for European down-and out barrier call options with NNA, DE, and ADELP.

Type of errors Result NNA Result DE Result ADELP
RMSE 1.778e+00 5.181e-02 4.417e-02

result of ADELP was the smallest compared to DE and
NNA. Therefore, we used ADELP next to approximate
BS and BS equipped with barrier option pricing.
In Fig. 1, we show the surface comparison result of

ADELP, DE, NNA to analytical approximation solu-
tion. Based on the surface results, we conclude that
ADELP for European call options could approximate
the analytical approximation solution better than DE
and NNA. Therefore, the ADELP algorithm can be
used to approximate the solution of BS for European
call option pricing.

Next, we compare graphs of the ADELP, DE, and
NNA result with a graph of the analytical approxima-
tion solution (Fig. 2). It can be seen that the graph
of ADELP fits well with the graph of the analytical
approximation solution. Therefore, ADELP can be a
good tool to approximate the analytical approximation
solution.

4.2 Down-and-Out Barrier

In this subsection, we show the result for the European
call option equipped with down-and-out barrier using
ADELP, DE, and NNA. The results of the approxi-
mation solution are given in Table 3. The surface of
each problem is shown in Fig. 3 and a graph of each
problem is shown in Fig. 4.

Based on the results in Table 3, the RMSE of the
result of ADELP was the smallest compared to DE and
NNA. Therefore, we used ADELP next to approximate
BS equipped with barrier option pricing.

In Fig. 3, we show a comparison of the surface re-
sults of ADELP, DE, and NNA with the analytical ap-
proximation solution. Based on the surface results, we
conclude that ADELP for European down-and-out bar-
rier call option pricing could approximate the analyti-
cal approximation solution better than DE and NNA.
Therefore, the ADELP algorithm can be a good tool
to approximate the solution of BS European down-and-
out barrier call option pricing.

Next, we compared graph of the results of ADELP,
DE, and NNA with a graph of the analytical approxi-
mation solution in Fig. 4. It can be seen that the graph
of ADELP fits well with the graph of the analytical
approximation solution. The graph of ADELP better
approximates the graph of the analytical approxima-
tion solution than the graphs of DE and NNA. Thus,
ADELP can be a good tool to approximate the analyt-
ical approximation solution of European down-and-out
barrier call option pricing.

5 Discussion

In Table 1, we show the parameter settings for NNA,
DE and ADELP. Based on Kazikova et al. [15], it is

Figure 3: Surface comparison of the approximation so-
lutions of the Black-Scholes equation equipped with
down-and-out barrier from ADELP, DE and NNA with
the analytical approximation solution.

Figure 4: Graph comparison of the approximation so-
lutions of the Black-Scholes equation equipped with
down-and-out barrier from ADELP, DE, and NNA
with the analytical approximation solution along with
the graph of the best cost value with the best itera-
tions.

essential to pay attention to the quality of conducted
experiments, especially when comparing several differ-
ent algorithms. Parameter tuning of a metaheuristic
algorithm should be an integral part of the develop-
ment and testing process because it can influence the
performance of the algorithm. Therefore, we chose to
use a learning parameter with the ADELP algorithm to
improve its result compared to DE and NNA. We did
not choose a mutation scale as input for the ADELP
algorithm because ADELP algorithm find the value of
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the mutation scale itself during the iteration process.
The process of finding the mutation scale is called the
learning process and the mutation scale is called the
learning parameter. It is appropriate to use a learn-
ing parameter with BS partial differential equations
because the learning process is appropriate to find a
mutation scale that fits the iteration for solving bar-
rier option pricing. ADELP with learning parameter
is the novelty of this paper and it fits well with the BS
PDE for barrier option pricing.

In metaheuristic algorithms like ADELP, DE, and
NNA, the population is initialized randomly. Matousek
et al. [18] proposed a way to select a good starting so-
lution. One possibility is to start from a random solu-
tion in the hope that after a sufficiently large number
of tries, one gets a ‘good enough’ solution. In our ex-
periment, we used 1,000 iterations and a population of
200.

The method proposed by Matousek et al. [18] solves
the quadratic assignment problem (QAP) by using a
fusion of two approaches, whereby the solutions from
the computation of the lower bounds are used as the
starting points for a metaheuristic optimization algo-
rithm, called HC12, which is implemented on a GPU
CUDA platform. Adding lower bound techniques in
constructing the starting point has a significant impact
on the quality of the resulting solutions.

Barrier option pricing is an NP-hard optimization
problem because it uses a BS PDE. Therefore, it is
attractive to use a metaheuristic algorithm that can
find high-quality solutions within an acceptable com-
putation time. We used zero as the lower bound of
the strike price and as the lower bound of the maturity
time. We used this lower bound to make sure that the
result of our exercise was always positive, because it is
related to the option price.

6 Conclusion

In this paper, we proposed using a residual function to
solve the BS equation with given boundary conditions
in order to predict the value of European call options
and European call options equipped with barrier op-
tion pricing. We also described how to transform the
option pricing problem into an optimization problem
using this residual function. Then, we used Adaptive
Differential Evolution with a learning parameter to find
the approximation solution for the BS PDE to calcu-
late the value of European call options and European
call options equipped with barrier options.

This optimization method can be used in the calcula-
tion of the approximation solution of BS equipped with
barrier options or without barrier options. The benefit
of using this method is that we can approximate the
solution without using a mesh method. It also enables
us to find the approximate solution without transfor-
mation, so that all variables are defined well.

In the future, we will try to apply the proposed
method to options that do not have an exact solution,

such as other types of exotic options.
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