
MENDEL — Soft Computing Journal, Volume 28, No. 1, June 2022, Brno, Czech RepublicX

ISSN: 1803-3814 (Printed), 2571-3701 (Online)
https://doi.org/10.13164/mendel.2022.1.041

Meta-Heuristics Based Inverse Kinematics of Robot Manipulator’s Path Tracking
Capability Under Joint Limits

Ganesan Kanagaraj1,�, S A R Sheik Masthan2, Vincent F Yu3

1,2Department of Mechatronics Engineering, Thiagarajar College of Engineering, Anna University, Madurai, Tamil Nadu, India
3Department of Industrial Management, National Taiwan University of Science and Technology, Taipei, Taiwan

gkmech@tce.edu1,�,sarsmech@tce.edu2,vincent@mail.ntust.edu.tw3

Abstract
In robot-assisted manufacturing or assembly, following a predefined path became
a critical aspect. In general, inverse kinematics offers the solution to control the
movement of manipulator while following the trajectory. The main problem with
the inverse kinematics approach is that inverse kinematics is computationally com-
plex. For a redundant manipulator, this complexity is further increased. Instead of
employing inverse kinematics, the complexity can be reduced by using a heuristic
algorithm. Therefore, a heuristic-based approach can be used to solve the inverse
kinematics of the robot manipulator end effector, guaranteeing that the desired
paths are accurately followed. This paper compares the performance of four such
heuristic-based approaches to solving the inverse kinematics problem. They are
Bat Algorithm (BAT), Gravitational Search Algorithm (GSA), Particle Swarm Op-
timization (PSO), and Whale Optimization Algorithm (WOA). The performance
of these algorithms is evaluated based on their ability to accurately follow a pre-
defined trajectory. Extensive simulations show that BAT and GSA outperform
PSO and WOA in all aspects considered in this work related to inverse kinematic
problems.

Keywords: Inverse Kinematics, Redundant Robot Manipulator, Path Track-
ing, Meta-Heuristic Algorithm, BAT, Particle Swarm optimization, Gravitational
Search, Whale Optimization.

Received: 05 April 2022
Accepted: 15 June 2022

Online: 24 June 2022
Published: 30 June 2022

1 Introduction

Recent increase in the use of robot manipulators in in-
dustries has attracted a great deal of attention to con-
trol the robot manipulator. Their wide applications in
industrial systems include welding, painting, assembly,
etc. A welding torch or a paint sprayer will be attached
as a tool in the end effector of the robot manipulator.
This tool has to accurately follow a predefined path in
order to perform a particular task. Robot manipula-
tors are made of several connected links. These links
are to be controlled accurately in order to follow the
given reference trajectories precisely. However, it is
typically not tractable to control them accurately be-
cause of their high nonlinearity and unmodeled uncer-
tainties. Thus, many works have been carried out to
resolve such difficulties.

Several methodologies have been used for solving the
inverse kinematics problem. Quaternion transforma-
tion approach was proposed to solve the inverse kine-
matic problem wherein solution for a general 7-link 7R
mechanism is presented [17, 18, 19]. [26] proposed a
detailed derivation of inverse kinematics using expo-
nential rotational matrices by breaking the 6R-chain
in the middle to form two open 3R-chains. Later [53]
used the same quaternion approach instead of the regu-
lar Newton-Euler and Lagrange method as it simplified

the modelling of the kinematics and dynamics of rigid
multi-body systems.

Similar approaches were followed for trajectory
tracking also. Jacobian matrix-adaption method was
employed to overcome the two major limitations in
Jacobian-matrix-pseudo-inverse (JMPI) for tracking
control of robot manipulators [7]. A decentralized con-
trol strategy with finite-time convergence is developed
for the trajectory tracking of a space manipulator
in [41]. In this work, the robot manipulator is
considered as a number of decoupled subsystems. A
similar decoupling mechanism was proposed in [50]
for aircraft assembly using a multi-objective posture
optimization algorithm. For aerial manipulation, a
multi-stage Model Predictive Control based approach
was proposed in which was verified using a 3 degrees
of freedom manipulator [15].

Several iterative approaches were also experimented
for developing a controller for robot manipulator to fol-
low a predefined trajectory. Iterative Learning Control
was developed to identify and calculate the robot kine-
matic parameters and proposed an algorithm for the
accurate path tracking of industrial robots [52].

An adaptive control method for trajectory track-
ing of robot manipulators, based on new neuro-fuzzy
modelling was proposed in [43]. The proposed control

41

MENDEL — Soft Computing Journal, Volume 28, No. 1, June 2022, Brno, Czech RepublicX

scheme used a three-layer neural fuzzy network to esti-
mate the system uncertainties, and its performance was
compared with the conventional computed torque PD
control. In [48], an adaptive output feedback tracking
controller was proposed to prove the uniform global
stability for the robot dynamic model with unknown
parameters. [8] used Differential Evolution algorithm
for training the neural network to obtain the kinematic
modeling of robot manipulators.

[45] used neural network to track the trajectory
adaptively. A radial basis function network is in-
vestigated to the joint position control of an n-link
robot manipulator. Andreev and Peregudova investi-
gated the trajectory control using uniform asymptotic
stability in closed-loop system by using the dynamic
position-feedback controller with feedforward [1]. A
two-link planar elbow robot manipulator was used to
illustrate the results. Baek et al., presented a practical
Adaptive Time Delay Control scheme which was ap-
plied to robot manipulators to achieve good tracking
performance with tolerant fluctuation and fast conver-
gence speed [3].

Several control algorithms were proposed for tra-
jectory tracking mechanisms in industrial robots. To
name a few, Discrete-Time Nonlinear Optimization
control [21], Sliding mode controller [30], adaptive con-
trol [49]. A sinusoidal-input describing function model
along was created along with a controller for a two-
link robot manipulator in [9]. A trajectory algorithm
using artificial neural network and Kalman filter was
proposed by [27]. The efficiency of the algorithm was
verified by simulated using a 3-link Manipulator. To
overcome the computational difficulties and approxi-
mations involved with the analytical methods, a ma-
chine learning based algorithm was proposed to predict
the inverse kinematic solutions for parallel manipula-
tors [44].

The computational complexity of the conventional
analytical and other Jacobian based inverse kinemat-
ics led to the use of heuristic and meta-heuristic-based
approach for this inverse kinematics problem [5]. Many
swarm intelligent and meta-heuristics algorithms were
employed to solve various optimization problems in the
field of engineering. A new mutated genetic algorithm
was employed to solve the problem of independent job
scheduling in grid computing [51]. Study on the in-
ner dynamics of PSO algorithm using network visu-
alization showed the self-adaptive approaches of PSO
[35]. The versatility of these algorithms had led to
the development of hybrid algorithms. To name a few,
genetic algorithm with fuzzy for multi objective opti-
mization [40], Particle Swarm Optimization with clus-
tering algorithm for system modeling and identification
[23], facility location-network design model using Fire-
fly and Invasive Weed Optimization based fuzzy sys-
tem [39]. For the inverse kinematics issue considered
in this paper, various meta-heuristic algorithms such
as Genetic Algorithm [34, 6], Particle Swarm Opti-
mization Algorithm [10, 15], Cuckoo Optimization Al-

gorithm [4], Genetic Algorithm, Gravitational Search
Algorithm [2], Artificial Bee Colony [14], Fire Fly Al-
gorithm [38], Modified Firefly [22], Bat Algorithm [28],
were employed.

Heuristic and meta-heuristic algorithm-based mo-
tion planning and tracking were also employed. [25,
29, 42, 46] proposed an adaptive genetic algorithm for
tracking the trajectory of a robot manipulator. Online
optimizations method was proposed by [16] for trajec-
tory tracking to overcome the limitation of the tradi-
tional methods.

Literature survey shows the usage of meta-heuristic-
based approaches for inverse kinematic problem. Since,
the meta-heuristic approach does not include a Jaco-
bian matrix and there is always a solution for forward
kinematics, there are no singular configurations. At
the same time, literature review shows that the usage
of meta-heuristic approach for the robot manipulator
trajectory following is very limited. The performance
of these meta-heuristic algorithms is measured based
on the faster convergence rate. From the survey, it
was found that the usage of meta-heuristic-based ap-
proaches for inverse kinematics problem is limited and
it was not extended to actual robot manipulators. This
motivated us in using proposing a meta-heuristic-based
approach to solve the inverse kinematic problem for an
industrial robot manipulator.

This paper’s contributions are summarized as fol-
lows. Four algorithms, viz.: BAT, GSA, PSO and
WOA are experimented in this research work for solv-
ing the inverse kinematics problem for robot manipula-
tors. Heuristic approach is proposed as it does not in-
clude a Jacobian matrix and there is always a solution
for forward kinematics, there are no singular configura-
tions as a consequence of inverse kinematics. The four
proposed algorithms are compared based on their ca-
pability to generate solution that helps the robot ma-
nipulator to closely follow the pre-defined trajectory.
Four predefined trajectories, viz.: linear, curvilinear,
saw tooth and rose curve, are used to test the tra-
jectory following capability of the heuristic algorithm.
Wilcoxon test is employed to measure the performance
of the trajectory following capability of the proposed
algorithms based on three parameters viz., Minimum
Average Error, Fast Convergence and Minimal vari-
ation in joint angles. The results are simulated and
discussed. The remainder of the paper is structured as
follows. A general overview of the problem is described
in Section 2. Section 3 explains the proposed method-
ology and how it is used to carry out the simulation
for trajectory following. Section 4 discusses about the
experimental setup and the results obtained from the
experiments. The paper is concluded with the key find-
ings in section 5.

2 Problem Description

The position of the end effector of a robot manipulator
can be controlled or varied by changing the link an-
gles of the robot manipulator. Calculating these link

42

MENDEL — Soft Computing Journal, Volume 28, No. 1, June 2022, Brno, Czech RepublicX

Kanagaraj et al.: SettingsMeta-Heuristics Based Inverse Kinematics of Robot Manipulator’s Path Tracking ...

Table 1: Input and output of the algorithms.

Input
1. jth coordinate point (xd, yd, zd)j in the trajectory

2. link angles (θ1, . . . θl, . . . θnL)j−1 generated for reaching the to (j − 1)
th

point

Output
link angles (θ1, . . . θl, . . . θnL)j for reaching the jth coordinate point (xa, ya, za)j in the generated trajectory

angles for a particular end effector position in space
is done generally by inverse kinematics. Inverse kine-
matics, in general, is computationally complex. The
increased number of links in a redundant manipulator
further increases this complexity [11]. The computa-
tional complexity of this link angle calculation can be
reduced by employing heuristic algorithm instead of in-
verse kinematics. So, heuristic-based approach can be
used to solve the inverse kinematics of the robot manip-
ulator end-effector, which guarantees that the desired
paths are followed precisely.

2.1 Problem Statement

The efficiency of any robot manipulator in closely fol-
lowing the predefined trajectory can be measured in
terms of its deviation from the predefined path or tra-
jectory. This difference or deviation of the end effector
from the predefined path at any point in the trajectory
can be mathematically stated as:

Error(ϵ) =

√
(xd − xa)

2
+ (yd − ya)

2
+ (zd − za)

2

(1)
Here, (xd, yd, zd) , (xa, ya, za) denotes the Cartesian
coordinates of desired and actual position of the end
effector respectively. The problem is to find the link
angles of each joint such that the error is minimum.
Therefore, the problem can be transformed into an
equivalent optimization problem as:

Minimize Error(ϵ)

subjected to the condition that (2)

θl,min ≤ θl ≤ θl,max

Here, θl represents the lth link angle, θl,min and θl,max

are the minimum and maximum value of the lth link
angle, l = 1, 2, . . . , nL with nL represents the number
of links.
So, based on the above problem discussion, the ob-

jective of this research work is to experiment the pro-
posed heuristic algorithms (BAT, GSA, PSO & WOA)
for calculating the link angles of a robot manipulator
to accurately follow a predefined trajectory.

3 Proposed Methodology

Four algorithms viz.: BAT, GSA, PSO and WOA, are
employed in this research work to achieve the proposed
objective. The efficiency of these algorithm is tested
based on its closeness in following the generated tra-
jectories. Table 1 shows the input and output of the
algorithms.

Here, j = 1, 2, . . . , nPT and nPT is the num-
ber of points in the generated trajectory. The al-
gorithm iterates repeatedly and gives the link an-
gles (θ1, . . . θl, . . . θnL)j of the robot manipulator to
the reach the point that is given as input. Here
l = 1, 2, . . . , nL and nL is the number of links
in the robot manipulator. When these link angles
(θ1, . . . θl, . . . θnL)j are applied to the robot manipu-
lator, it will orient in a particular configuration there
by reaching a point (xa, ya, za)j The difference between

(xd, yd, zd)j and (xa, ya, za)j is the error for jth point
in the trajectory.

For smooth movement of the robot manipulator,
there should be minimal changes in the link angles and
there should not be abrupt variations in the link an-
gles. To ensure this, the link angles generated for the
previous point in the trajectory is also given as input
to the algorithm.

3.1 Particle Swarm Optimization (PSO)

PSO algorithm was introduced by Kennedy and Eber-
hart [13]. It uses swarm intelligences for solving prob-
lems. It was inspired by the social behavior of the birds
and fishes in finding their prey. A comprehensive study
with the applications of PSO were presented in [24].

In PSO, each particle searches for the optimal solu-
tion thereby moving with a certain velocity. Each par-
ticle also remembers their best result as local best and
the overall best of the entire population as global best.
At each step, a particle has to move to a new position
by adjusting its velocity so that its moves towards its
local best (Pi,pbest) and the overall global best (Pi,gbest)
record by the particle in the population. This is done
iteratively until the optimal solution is achieved.

Each and every particle in the popula-
tion represents the following set of parameter,
⟨PositionP t

i,l |V elocity V t
i,l⟩. Here, the position vector

P t
i,l represents the lth link angles (θ1, . . . θl, . . . θnL)

of ith particle in tth iteration. This is the required
solution (Pi,l). The velocity V t

i,l represents an incre-

mental change in the lth link angle of ith particle in
tth iteration. With nP as total number of particles
and nL as total number of links, i = 1, 2, . . . , nP and
l = 1, 2, . . . , nL.

V t
i,l = KV FV

t−1
i,l + Cpr1

(
Pi,pbest − P t−1

i,l

)
+Cgr2

(
Pgbest − P t−1

i,l

) (3)

P t
i,l = P t−1

i,l + V t
i,l (4)

43

MENDEL — Soft Computing Journal, Volume 28, No. 1, June 2022, Brno, Czech RepublicX

The above equations represent the position and veloc-
ity of each particle in the population in which KV F

represents the current velocity factor, r1 & r2 are uni-
formly distributed random number within the range
[0, 1], Cp &Cg represent the learning rates of local best
and global best particles respectively. The values for
these parameters are listed in are listed in Table 2.

3.2 Bat Algorithm (BAT)

developed by Xin-She Yang and Amir Hossein Gan-
domi [47]. It was inspired from echolocation behavior
of bats with the varying pulse rate of emission and
loudness which assists them in seeking for prey and/or
avoids obstacles in complete darkness. All bats use
echolocation to sense the distance. They fly randomly
with a certain velocity and with a fixed frequency. Dur-
ing their flight, bats emit a sound pulse with particular
loudness and listens to its echo that bounces back from
the surrounding environment. Based on the difference
in time between the emission of sound pulse and echo,
they detect the distance of the prey, its orientation and
even its motion. Based on their location the bats ad-
just its velocity and position thereby reaching the prey.
The same principle is used by them to detect an obsta-
cle and avoid them.
Each and every bat in the population

represents the following set of parame-
ters: ⟨Position P t

i,l, V elocityV t
i.l, frequency fi,

LoudnessAt
i, Pulse rate rti⟩. Here, the position vector

P t
i,l represents the lth link angles (θ1, . . . θl, . . . , θnL)

of ith bat in tth iteration. The velocity V t
i,l represents

an incremental change in the lth link angle of ith bat
in tth iteration. Bats emits wave with frequency in the
range [fmin fmax]. At

i & rti represents the loudness
and pulse rate of the wave emitted by the ith bat in tth

iteration. Of all these parameters, the position vector
P t
i,l i.e., the link angles of the robot manipulator

(θ1, . . . θl, . . . , θnL) represents the solution. Here,
i = 1, 2, . . . , nB and l = 1, 2, . . . , nL the velocity of
each bat and their position are calculated based on
the following equations.

V t
i,l = V t−1

i.l +
(
P t−1
i.l − Pgbest

)
fi (5)

P t
i,l = P t−1

i,l + V t
i,l (6)

To prevent the algorithm from getting stuck in a local
minima / maximum, and to increase the exploration
capability, a random walk is performed. Based on the
pulse rate rti , few bats are selected randomly to perform
a random walk. A random position for the bat Pnew

is generated using equation (7). This newly generated
position is selected based on the fitness (RMS Error)
& the loudness At

i of the corresponding bat. The pulse
rate rti and loudness At

i of each bat is updated using
equations (8,9) only if this new bat is accepted.

Pnew = Pgbest + εAt (7)

At+1
i = ωAt

i (8)

rt+1
i = r0i [1− exp(−γt)] (9)

Here, ε is a random number in the range [−1, 1], At is
the average loudness of all the bats at time t, r0i is the
initial pulse rate. Once a bat has found its prey, the
pulse rate increases and the loudness decreases. This is
achieved using the parameters ω, the pulse frequency
increasing coefficient and γ, the pulse amplitude atten-
uation coefficient. The values of these parameters are
listed in are listed in Table 2.

3.3 Gravitational Search Algorithm (GSA)

GSA is an optimization method based on Newtonian
gravity and the laws of motion. This algorithm was
developed by Rashedi et al. [37]. In the GSA, each
particle in the search space is considered as a mass.
Therefore, the GSA may be expressed as an artificial
mass system. All masses in the search space attract
each other according to Newton’s gravity law and in-
teract to exert force on each other with the force of
gravity. Acting in the search space, masses exposed to
these forces achieve the optimal solution.

Each and every particle mass in the system is rep-
resented by its position

(
P t

i,l

)
. The gravitational con-

stant is initialized at the beginning and will be reduced
with time as in equation (10) to control the search ac-
curacy.

Gt = G0e(−αt/Imax) (10)

Here, Gt is the gravitational constant at time any t and
G0 is the initial gravitational constant, α is the con-
stant exponent factor. Here, t = 1, 2, . . . , Imax, where
Imax is the maximum iteration count of the algorithm.
The fitness (RMS Error) of each mass

(
P t

i,l

)
are calcu-

lated and from this the best fitness value, i.e., the min-
imum RMS error (errtmin) and worst fitness value, i.e.,
the maximum RMS error (errtmax) are selected. From
these, the gravitational mass (mt

i) of the ith particle
in the system at time t is calculated using equations
(11) and the normalized gravitational mass

(
M t

i

)
is

calculated using equation (12).

mt
i =

errti − errtmax

errtmax − errtmin

(11)

M t
i =

mt
i∑nP

i=1 mt
i

(12)

Here, nP is the total number of particle mass in the
system. Now the force between the ith & kth particle
mass in the system

(
F t

i,k

)
and the total force

(
F t

i

)
acting on any ith particle mass at any time t are cal-
culated using equation (13) and (14) respectively.

F t
i,k = Gt

(
M t

i · M t
k

eudti,k + eps

)(
P t

k,l − P t
i,l

)
(13)

F t
i =

nP∑
k∈bestK,k ̸=i

rand · F t
i,k (14)

Here, P t
i,l & P t

k,l are the position of ith & kth parti-

cle mass and eudti,k is the Euclidian distance between

44

MENDEL — Soft Computing Journal, Volume 28, No. 1, June 2022, Brno, Czech RepublicX

Kanagaraj et al.: SettingsMeta-Heuristics Based Inverse Kinematics of Robot Manipulator’s Path Tracking ...

Table 2: Parameters used for BAT, GSA, PSO and WOA.

Algorithm Parameters Value

BAT

Frequency Range [fmin, fmax] [−0.05, 0.05]
Pulse frequency increasing coefficient (ω) 0.97
Pulse amplitude attenuation coefficient (γ) 0.1
Loudness (At

i) Random number in the range [1 2]
Initial Pulse Rate (rti) Random number in the range [0 1]

GSA
Initial gravitational constant

(
G0
)

100
Constant exponent factor (α) 1
Random best agents (bestK) (100 to 2)%

PSO
Current Velocity Factor (KV F) 0.3033
Learning rates (Cp & Cg) 2.4 & 3.2
Uniformly distributed random number (r1& r2) Random number in the range [0 1]

WOA
Shape of spiral (b) 5
Solution selection parameter (p) Random number in the range [0 1]

them which is calculated using equation (15). eps is
a constant value added to avoid divide by zero condi-
tion, rand is a random number between 0 and 1, bestK
is the set of for k agents with best fitness values, i.e.,
minimum RMS errors.

eudti,k = ||P t
k,l − Pi, lt|| =

√√√√ nL∑
l=1

(θtk,l − θti,l)
2 (15)

Now the new solution or the update in position of the
masses in the system are updated using the following
equations.

P t
i,l = P t−1

i,l + V t
i,l (16)

V t
i,l = rand · V t

i,l + At
i,l (17)

At
i,l =

F t
i

M t
i

(18)

Here, V t
i,l & At

i,l are the velocity and acceleration of

the ith agent at time t.

3.4 Whale Optimization Algorithm (WOA)

Mirjalili and Lewis [32] developed WOA which mim-
ics the intelligent hunting behavior of humpback. This
foraging behavior is called bubble-net feeding method
which is observed only in humpback whales. The
humpback whales dive down approximation 12 m and
then create the bubble in a spiral shape around the
prey. They then swim upward the surface following
the bubbles and hunt the prey. Humpback whales can
find the place of prey and encircle them. The WOA
algorithm considers current best search agent position
be the target prey or close to the optimum point, and
other search agents will try to update their position
towards the best search agent. Applications of WOA
were presented in this work [20].
Each and every agent in the population is repre-

sented by its position vector
(
P t
i,l

)
. Here, the position

vector represents the lth link angles (θ1, . . . θl, . . . θnL)
of ith agent in tth iteration. This is the solution vec-
tor. Here, i = 1, 2, . . . , nA and l = 1, 2, . . . , nL. nA is

the total number of agents in the population and nL
is the dimension of the solution, i.e., it represents the
number of links of the robot manipulator in this work.
The position of each agent is calculated and updated
based on the following equations.

P t
i,l =

{
P t

gbest − (A ∗ dist) if p < 0.5

dist′ ∗ eb∗lrand ∗ cos (2π ∗ lrand) + P t
gbest if p ≥ 0.5

(19)

dist = 2 · rand · P t
gbest − P t

i,l (20)

dist′ =
∣∣P t

gbest − P t
i,l

∣∣ (21)

Here, P t
i,l is the position of the ith agent with l dimen-

sion at time t, P t
gbest is the best agent so far at time

t, rand & p are random numbers in the range [0 1]. A
and lrand are calculated as follows.

A = 2 · rand · a1− a1 (22)

lrand = 1 + (a2− 1) · rand (23)

Here, a1 is a linearly decreasing vector from 2 to 0 over
the course of iterations and a2 is a linearly decreasing
vector from -1 to -2 over the course of iterations, b
represents the shape of the spiral.

3.5 Algorithm Parameters

The values of the optimization parameters common to
the algorithms are set as follows; Population size n =
60; the maximum iteration count used for trajectory
following testing Imax = 100; the minimum acceptable
error used for convergence testing is 0.1 × 10−4. The
parameters related to BAT, GSA, PSO and WOA used
in this work are listed in Table 2.

3.6 Framework

The steps involved in carrying out the simulation are as
follows. The 3D model of YASHKAWA MH5 robot is
imported into MATLAB simulation environment [31].

1. Generate the trajectory for the selected curve
(Linear / Curvilinear / Saw Tooth / Rose Curve)

45

MENDEL — Soft Computing Journal, Volume 28, No. 1, June 2022, Brno, Czech RepublicX

Figure 1: Flowchart of the Simulation Framework.

2. Now each and every point (xd, yd, zd)j in the gen-
erated trajectory, including waypoints, are given
as input to the algorithms (BAT, GSA, PSO
& WOA). Here j = 1, 2, . . . , nPT and nPT is
the number of points in the generated trajectory.
The output from the algorithm are the link an-
gles (θ1, . . . , θl, . . . , θnL)j to reach the jth point
(xd, yd, zd)j . Here nL represents the number of
links in the robot manipulator.

3. Now, using the link angles (θ1, . . . , θl, . . . , θnL)j ,
generated by the algorithm, the actual point
reached by the robot manipulator (xa, ya, za)j is
calculated.

4. The trajectory obtained using the points
(xa, ya, za)j (obtained from BAT / GSA / PSO /
WOA) is plotted and compared with the expected
trajectory using the points (xd, yd, zd)j . and the
error between these trajectories are generated.

5. The results are analyzed, interpreted and final
conclusion is arrived.

The entire framework of the simulation carried out in
this work presented in the flowchart in Figure 1.

3.7 Solution Representation and Fitness Evaluation

This section explains how the solution, i.e., link an-
gles (θ1, . . . , θl, . . . θnL) generated by the algorithm are
transformed into a cartesian point (xa, ya, za) in space,

and based this how the fitness is evaluated. If we ap-
ply the link angles (θ1, . . . , θl, . . . θnL) to a robot ma-
nipulator, it will take a configuration and its end ef-
fector will reach a particular point in space. This end
effector position calculation based on the link angles
(θ1, . . . θl, . . . , θnL) is called forward kinematics. This
can be calculated using the transformation matrix [12].
The general form of a standard transformation matrix
from link l − 1 to link l is given by

link l−1
linkT =
cosθl −sinθl 0 al−1

sinθlcosαl−1 cosθlcosαl−1 −sinαl−1 −sinαl−1dl
sinθlsinαl−1 cosθlsinαl−1 cosαl−1 cosαl−1dl

0 0 0 1

(24)

Where, al−1 is the link length, αl−1 is the twist angle,
dl is the joint offset, θl is the joint angle or the link
angle of the corresponding link. Here l = 1, 2, . . . , nL
and nL represents the number of links in the robot
manipulator. The transformation matrix in equation

(24) is calculated for base to link 1
(

base
link 1T

)
, link 1

to link 2
(
link 1
link 2T

)
, till link nL− 1 to the end effector(

link nL−1
end effectorT

)
.

Multiplying all these matrices will give the trans-
formation matrix from base to the end effector of the
robot manipulator.

base
end effectorT = base

link 1T · link 1
link 2T · · · link nL−1

end effectorT (25)

In resulting 4 × 4 matrix base
end effectorT from equation

(24), the values in the location (1, 4) , (2, 4) , (3, 4)
give the (x, y, z) coordinate of the end effector of robot
manipulator. Thus, the link angles (θ1, . . . θl, . . . , θnL)
are transformed into coordinates (xa, ya, za).
The input to this algorithm is any jth point

(xd, yd, zd)j from the trajectory. This is the de-
sired coordinate that the robot manipulator has to
reach. From the randomly generated link angles
(θ1, . . . θl, . . . , θnL), the coordinate point actually
reached by the robot manipulator (xa, ya, za) is calcu-
lated. The fitness of this solution is calculated based
on its deviation from the desired position (xd, yd, zd)j .
This deviation is calculated based on the Root Mean
Square (RMS) error, i.e., the fitness of the solution for
any jth point in the trajectory is calculated as

RMSerrorj =
√

(xa − xd)j
2 + (ya − yd)j

2 + (za − zd)j
2

(26)

4 Results and Discussions

The simulation environment and the test cases used
for measuring the efficiency of the proposed methodol-
ogy are explained in this section. MATLAB (R2020b)
environment is used to simulate the proposed work.
YASKAWA’s MH5 robot manipulator is considered to
carryout the stated objective. The actual robot and
the simulated robot are shown in Figure 2.

46

MENDEL — Soft Computing Journal, Volume 28, No. 1, June 2022, Brno, Czech RepublicX

Kanagaraj et al.: SettingsMeta-Heuristics Based Inverse Kinematics of Robot Manipulator’s Path Tracking ...

(a) (b)

Figure 2: (a) YASKAWA’s MH5 robot manipulator
Physical robot (b) Robot simulated in MATLAB envi-
ronment.

Table 3: YASKAWA’s MH5 Robot Manipulator Pa-
rameters [33].

Name of Link Angle Maximum
the Line Range (◦) Speed (◦/s)

S-Axis: Swivel Base −170 ≤ θ1 ≤ +170 376
L-Axis: Lower Arm −065 ≤ θ2 ≤ +150 350
U-Axis: Upper Arm −136 ≤ θ3 ≤ +255 400
R-Axis: Arm Roll −190 ≤ θ4 ≤ +190 450
B-Axis: Wrist Bend −135 ≤ θ5 ≤ +135 450
T-Axis: Tool Flange −360 ≤ θ6 ≤ +360 720

This robot has 6 links (nL). Therefore the six link
angles (θ1, θ2 . . . , θ6) corresponding to the 6 links are
adjusted simultaneously to control the position and ori-
entation of the robot’s end effector. The other param-
eters related to this robot manipulator are shown in
Table 3.
The performance of the proposed algorithms for tra-

jectory following are assessed using four different tra-
jectories, viz., linear, curvilinear, sawtooth and rose
trajectories. The trajectories simulated in MATLAB
environment are shown in Figure 3.

Each trajectory consists of j points, where, j =
1, 2, . . . , nPT , and nPT is the number of points in the
trajectory. In this paper, nPT is considered as 17, i.e.,
we generate 15 intermediate points between the start
and endpoint of the trajectory, plus one start point and
one end point. The number of intermediate points in
the trajectory is selected as 15 for the sake of simplic-
ity and ease of comparison. The number of points in
the trajectory can be decided based on the application.
The error between the expected trajectory and the tra-
jectory generated by BAT, GSA, PSO and WOA are
calculated for these 17 points.
The objective of this work is to find the joint an-

gles of the robot manipulator to reach the points in
the trajectory with minimum error. So, the proposed
work emphasis on following the trajectory with min-
imum error and does not depend on the number of
points in the trajectory. The algorithm is tested for its
closeness in following the trajectory. All experiments
are deployed on the PC with Intel (R) Core (TM) i3,
M370 @2.40GHz, 8GB RAM using MATLAB 2020b.

(a)

(b)

(c)

(d)

Figure 3: Expected reference trajectory (a) linear (b)
curvilinear (c) sawtooth (d) rose curve.

47

MENDEL — Soft Computing Journal, Volume 28, No. 1, June 2022, Brno, Czech RepublicX

(a) (b)

(c) (d)

Figure 4: Average error plots (a) linear trajectory (b) curvilinear trajectory (c) sawtooth trajectory (d) rose
curve trajectory.

Table 4: Average Error
(
×10−4

)
between expected and generated trajectory.

Algorithm
Trajectory Intermediate points in the Trajectory

Type Start 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 End

Linear

BAT 0.02 0.02 0.03 0.03 0.02 0.05 0.02 0.03 0.03 0.07 0.03 0.02 0.06 0.02 0.03 0.04 0.06
GSA 0.20 0.23 0.22 0.29 0.23 0.22 0.21 0.20 0.16 0.20 0.24 0.24 0.22 0.31 0.34 0.33 0.20
PSO 3.00 2.95 2.48 1.88 2.43 1.03 1.79 3.43 3.45 1.82 1.79 2.25 2.99 3.03 1.11 2.97 3.79
WOA 6.50 6.30 5.21 6.09 3.68 2.76 4.17 2.85 3.65 0.60 0.62 1.23 0.79 2.60 2.35 2.62 4.11

Curvilinear

BAT 0.03 0.03 0.02 0.03 0.02 0.03 0.02 0.03 0.02 0.03 0.03 0.03 0.02 0.02 0.02 0.03 0.04
GSA 0.18 0.18 0.19 0.21 0.25 0.29 0.24 0.28 0.21 0.33 0.28 0.35 0.31 0.36 0.33 0.25 0.31
PSO 1.50 1.56 0.78 0.77 1.00 0.78 0.72 0.65 0.66 0.91 0.59 0.58 0.56 0.54 0.44 0.70 1.12
WOA 5.21 4.36 2.15 1.35 1.22 1.63 0.89 0.58 0.77 0.31 0.50 0.55 0.39 0.92 1.92 1.67 2.83

Sawtooth

BAT 0.06 0.04 0.04 0.04 0.09 0.02 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.02
GSA 0.19 0.20 0.21 0.22 0.21 0.17 0.18 0.26 0.21 0.26 0.35 0.28 0.24 0.21 0.18 0.20 0.22
PSO 1.66 1.60 1.14 1.57 1.21 1.16 0.75 1.22 0.96 0.65 0.89 1.99 1.49 1.64 1.07 1.28 1.48
WOA 0.83 0.53 1.07 4.49 4.87 4.62 3.49 2.35 2.16 3.52 4.89 5.06 3.90 4.15 4.53 4.66 4.64

Rose curve

BAT 0.04 0.03 0.02 0.03 0.03 0.02 0.03 0.02 0.03 0.03 0.02 0.03 0.03 0.03 0.02 0.03 0.03
GSA 0.18 0.21 0.21 0.27 0.19 0.22 0.19 0.14 0.15 0.14 0.18 0.17 0.16 0.17 0.20 0.17 0.17
PSO 2.36 1.38 2.01 1.01 1.67 2.33 1.24 1.91 1.50 0.74 1.40 1.38 1.17 1.35 1.01 1.08 1.47
WOA 6.02 6.02 2.26 0.43 0.70 3.16 2.63 4.86 2.51 4.11 6.70 7.09 4.95 1.92 1.97 6.81 5.34

Table 5: Statistical analysis of average error
(
×10−4

)
, bold face represents best values.

Algorithm Trajectory Type Mean Median Standard Deviation Minimum Maximum

Linear

BAT 0.03 0.03 0.01 0.02 0.07
GSA 0.23 0.22 0.05 0.16 0.34
PSO 2.33 2.48 0.79 1.03 3.79
WOA 2.63 2.85 1.88 0.60 6.50

Curvilinear

BAT 0.03 0.03 0.00 0.02 0.04
GSA 0.26 0.28 0.06 0.18 0.36
PSO 0.77 0.72 0.31 0.44 1.56
WOA 1.17 1.22 1.35 0.31 5.21

Sawtooth

BAT 0.03 0.03 0.02 0.02 0.09
GSA 0.22 0.21 0.04 0.17 0.35
PSO 1.23 1.22 0.35 0.65 1.99
WOA 2.98 4.15 1.49 0.53 5.06

Rose curve

BAT 0.03 0.03 0.00 0.02 0.04
GSA 0.18 0.18 0.03 0.14 0.27
PSO 1.41 1.38 0.44 0.74 2.36
WOA 3.13 4.11 2.02 0.43 6.81

48

MENDEL — Soft Computing Journal, Volume 28, No. 1, June 2022, Brno, Czech RepublicX

Kanagaraj et al.: SettingsMeta-Heuristics Based Inverse Kinematics of Robot Manipulator’s Path Tracking ...

(a) (b)

(c) (d)

Figure 5: Statistical plot of average error for different trajectories (a) Linear (b) Curvilinear (c) Sawtooth (d)
Rose curve.

4.1 Trajectory Following Testing

Each of the 4 different trajectories are tested with four
different algorithms. So, a total of 16 different test
cases are carried out for trajectory following experi-
ment. To investigate the robustness, each of these 16
different cases are run for 20 times and the average
objective values are recorded. The performance of the
algorithm is measured in terms of its closeness in fol-
lowing the trajectory.
For each and every point in the reference trajectory

as input, the algorithms are executed for a maximum
iteration count Imax = 100. At the end of 100th iter-
ation, the best solution is taken as the output. The
trajectory is generated for all the four curves consid-
ered in this paper using the proposed algorithms. Each
of this case is run for 20 times and the average value of
error between the expected and the generated trajec-
tories are recorded. The plot of average error obtained
for these algorithms are shown in Figure 4 and the val-
ues are listed in Table 4.
Average error values in Table 4 shows that BAT and

GSA closely follows the reference trajectory with min-
imum error when compared to other algorithms con-
sidered in this paper. Both BAT and GSA produced
consistent result at all times. This is evident from the
plot as there are very less variation in the average er-
ror. This is further investigated using the statistical
analysis which are listed in Table 5.

Table 5 shows that GSA’s performance is next best.
Both BAT and GSA were able to provide solution, with
consistent error values, for all points in the trajectory.
Where as PSO and WOA have a higher standard devi-
ation value. This is evident from the box whisker plot
shown in Figure 5.

4.2 Convergence Testing

The objective of every optimization algorithm is to con-
verge to a global optimal solution. This convergence
capability of BAT, GSA, PSO and WOA for the inverse
kinematics problem is tested as follows.

In trajectory following testing, the stopping condi-
tion was the maximum iteration count Imax = 100,
i.e., the algorithm is executed for 100 iterations and at
the end of 100th iteration, the best solution is taken
as the output. In convergence testing, a minimum ac-
ceptable error is set as the stopping condition. The
algorithm is executed till the minimum acceptable er-
ror is achieved. So, a random point in the trajectory is
selected and given as input to the algorithm. The min-
imum acceptable error is set as 0.1× 10−4. To prevent
the algorithm from running continuously, the iteration
limit is set as 1000. Each algorithm is executed 20
times and the average value of loop count and execu-
tion time required to achieve this acceptable error are
recorded and listed in Table 6.

49

MENDEL — Soft Computing Journal, Volume 28, No. 1, June 2022, Brno, Czech RepublicX

(a) (b)

(c) (d)

Figure 6: Error convergence plot comparison for (a) linear trajectory using (b) curvilinear trajectory (c) sawtooth
trajectory (d) rose curve trajectory.

Table 6: Convergence analysis.

Trajectory
Parameter

Algorithm
Type BAT GSA PSO WOA

Linear
Avg. loop count 22 88 96 46
Avg. time (s) 0.48 1.89 1.99 1.02

Curvilinear
Avg. loop count 18 86 81 78
Avg. time (s) 0.39 1.99 1.72 1.79

Sawtooth
Avg. loop count 21 87 116 69
Avg. time (s) 0.47 1.87 2.49 1.57

Rose curve
Avg. loop count 38 84 135 65
Avg. time (s) 0.82 1.93 2.91 1.48

In case of average loop count required to reach the
acceptable level of error, BAT still maintains its lead.
Though GSA was able to closely follow the trajectory
with lesser average error when compared with WOA,
the loop count required to achieve the results are more
than that of WOA.

To visualize the convergence of error, the error val-
ues during each iteration for a random point in the
trajectory is recorded. The average value of error after
20 executions for all the four trajectories are shown in
Figure 6. This plot also confirms the PSO and GSA
consumes more iterations to converge where as WOA
and BAT converges faster.

4.3 Singularity Testing

Furthermore, to check whether singularity is avoided
in the solution created by these proposed algorithms,
the joint angles (θ1, . . . θl, . . . , θ6) are recorded. The
variation of joint angles from the starting point to the
end point in the trajectory are noted. The plot of joint
angle variation for all the four trajectories considered
in this paper are shown in Figure 7 and Figure 8.

The joint angle variation plot in Figure 7 and 8 shows
that the joint angles generated for all the four trajec-
tories using BAT, GSA, PSO and WOA are within the
limits specified in Table 3 thereby avoiding singularity.

Investigating further into the joint angle variation
plots, GSA shows the best results. They were able
to create solution with minimal change in link angles
throughout the trajectory. This is seen in all the four
trajectories. Comparatively, more variation in the joint
angles is seen in WOA, PSO for linear trajectory and
in PSO for curvilinear trajectory.

4.4 Comparison using Wilcoxon test

Wilcoxon test is conducted to compare the perfor-
mance of the proposed algorithms for robot manip-
ulator trajectory tracking applications. The average
error during trajectory tracking, average loop count
and time required to reach a minimum acceptable er-
ror level, variation in the joint angles are considered as
parameters for this test. The results are listed in Table
7.

The result of Wilcoxon test reveal that BAT, GSA
are better in terms of the parameters considered in this
paper.

5 Conclusion

In this paper, four meta-heuristic-based approaches
(BAT, GSA, PSO & WOA) were used to make a robot
manipulator follow four pre defined paths. The perfor-
mance of these algorithms was measured based on their
accuracy and precision in following the trajectory, av-
erage loop count and time required to create solution

50

MENDEL — Soft Computing Journal, Volume 28, No. 1, June 2022, Brno, Czech RepublicX

Kanagaraj et al.: SettingsMeta-Heuristics Based Inverse Kinematics of Robot Manipulator’s Path Tracking ...

(a) (b) (c)

(d) (e) (f)

(g) (h)

Figure 7: Generated joint angles for linear trajectory using (a) BAT (b) GSA (c) PSO (d) WOA Curvilinear
trajectory using (e) BAT (f) GSA (g) PSO (h) WOA.

Table 7: Statistical analysis using Wilcoxon test.

Evaluation Parameters Trajectory Type
Rank

BAT GSA PSO WOA

Minimum Average Error

Linear 1 2 3 4
Curvilinear 1 2 3 4
Sawtooth 1 2 3 4
Rose curve 1 2 3 4

Fast Convergence

Linear 1 3 4 2
Curvilinear 1 4 3 2
Sawtooth 1 3 4 2
Rose curve 1 3 4 2

Minimal variation in joint angles

Linear 2 1 4 3
Curvilinear 3 1 4 2
Sawtooth 3 1 4 2
Rose curve 3 1 4 2

Average Rank 1.58 2.08 3.58 2.75
Final Rank 1 2 4 3

for a particular acceptable error and minimal variation
in the joint angles.

The experimental results showed that BAT closely
followed the trajectory with an average error of 0.03×
10−4 for all the four trajectories. Followed by this,
GSA was ranked 2 with an average error in the range
(0.08 to 0.26)×10−4. The average loop count and time
testing showed that BAT has superior performance

with WOA, GSA and PSO in the second, third and
fourth positions. Joint angle variation testing revealed
that GSA outperformed all other algorithms consid-
ered in this paper. In short BAT has shown the poten-
tial of getting faster convergence and yielding global
optimum solution for the inverse kinematics problem
along with trajectory tracking. GSA could create solu-
tion with lesser variations in the joint angles for inverse

51

MENDEL — Soft Computing Journal, Volume 28, No. 1, June 2022, Brno, Czech RepublicX

(a) (b) (c)

(d) (e) (f)

(g) (h)

Figure 8: Generated joint angles for sawtooth trajectory using (a) BAT (b) GSA (c) PSO (d) WOA Rose curve
trajectory using (e) BAT (f) GSA (g) PSO (h) WOA.

kinematics problem with minimal error.
The future scope of this work includes parameter

tuning of the algorithms to get better accuracy. Fur-
thermore, the environment considered in this paper is
3D with robot manipulator constrain only. No obsta-
cles were considered in the robot workspace. Detection
of obstacles, both static and dynamic, in the robot ma-
nipulator workspace can be taken as a future work.
Detection of the obstacle, along with its dimension, its
location in 3D space is required to alter the path of the
robot manipulator. So, detecting the obstacle’s pres-
ence, calculating its dimension, locating the obstacle
and tracking its movement, in case of dynamic obstacle
are needed to enable the robot manipulator to operate
in a more constrained environment. Lastly, existing al-
gorithms such as BAT, GSA, PSO andWOA are exper-
iment in this work to determine the solution of robot
manipulator for trajectory following. To gain advan-
tage of the best quality in the existing meta-heuristic
algorithms, hybrid algorithms can be developed and
experiment for the inverse kinematic problem consid-
ered in this paper.

References

[1] Andreev, A., and Peregudova, O. Trajectory
tracking control for robot manipulators using only
position measurements. International Journal of
Control 92, 7 (2019), 1490–1496.

[2] Ayyıldız, M., and Çetinkaya, K. Comparison
of four different heuristic optimization algorithms
for the inverse kinematics solution of a real 4-dof
serial robot manipulator. Neural Computing and
Applications 27, 4 (2016), 825–836.

[3] Baek, J., Cho, S., and Han, S. Practical time-
delay control with adaptive gains for trajectory
tracking of robot manipulators. IEEE Transac-
tions on Industrial Electronics 65, 7 (2017), 5682–
5692.

[4] Bayati, M. Using cuckoo optimization algorithm
and imperialist competitive algorithm to solve in-
verse kinematics problem for numerical control of
robotic manipulators. Proceedings of the Institu-
tion of Mechanical Engineers, Part I: Journal of
Systems and Control Engineering 229, 5 (2015),
375–387.

[5] Beyer, U., and Śmieja, F. A heuristic ap-
proach to the inverse differential kinematics prob-
lem. Journal of Intelligent and Robotic Systems
18, 4 (1997), 309–327.

[6] Chen, C.-Y., Her, M.-G., Hung, Y.-C., and
Karkoub, M. Approximating a robot inverse
kinematics solution using fuzzy logic tuned by ge-
netic algorithms. The International Journal of
Advanced Manufacturing Technology 20, 5 (2002),
375–380.

[7] Chen, D., Zhang, Y., and Li, S. Tracking con-
trol of robot manipulators with unknown models:

52

MENDEL — 8 1 June 2

Kanagaraj et al.: SettingsMeta-Heuristics Based Inverse Kinematics of Robot Manipulator’s Path Tracking ...

A jacobian-matrix-adaption method. IEEE Trans-
actions on Industrial Informatics 14, 7 (2017),
3044–3053.

[8] Cheng, J., Zhang, G., Caraffini, F., and
Neri, F. Multicriteria adaptive differential evolu-
tion for global numerical optimization. Integrated
Computer-Aided Engineering 22, 2 (2015), 103–
107.

[9] Chin, K. M., Teh, S.-H., Ho, J.-H., and Ng,
H. K. Controller design and trajectory tracking
of a two-link robotic orthosis via sinusoidal-input
describing function model. International Journal
of Mechanical Engineering and Robotics Research
8, 6 (2019).

[10] Chyan, G. S., and Ponnambalam, S. Obstacle
avoidance control of redundant robots using vari-
ants of particle swarm optimization. Robotics and
Computer-Integrated Manufacturing 28, 2 (2012),
147–153.

[11] DeMers, D., and Kreutz-Delgado, K. In-
verse kinematics of dextrous manipulators. In
Neural Systems for Robotics. Elsevier, 1997,
pp. 75–116.

[12] Denavit, J., and Hartenberg, R. S. A kine-
matic notation for lower-pair mechanisms based
on matrices.

[13] Eberhart, R., and Kennedy, J. A new op-
timizer using particle swarm theory. In MHS’95.
Proceedings of the sixth international symposium
on micro machine and human science (1995), Ieee,
pp. 39–43.

[14] El-Sherbiny, A., Elhosseini, M. A., and
Haikal, A. Y. A new abc variant for solving
inverse kinematics problem in 5 dof robot arm.
Applied Soft Computing 73 (2018), 24–38.

[15] Emami, S. A., and Banazadeh, A. Simul-
taneous trajectory tracking and aerial manipula-
tion using a multi-stage model predictive control.
Aerospace Science and Technology 112 (2021),
106573.

[16] Fang, J., Mei, T., Zhao, J., and Li, T. A
dual-mode online optimization method for trajec-
tory tracking of redundant manipulators. Indus-
trial Robot: An International Journal (2016).

[17] Funda, J., Taylor, R. H., and Paul, R. P.
On homogeneous transforms, quaternions, and
computational efficiency. IEEE transactions on
Robotics and Automation 6, 3 (1990), 382–388.

[18] Gan, D., Liao, Q., Wei, S., Dai, J., and
Qiao, S. Dual quaternion-based inverse kinemat-
ics of the general spatial 7r mechanism. Proceed-
ings of the Institution of Mechanical Engineers,
Part C: Journal of Mechanical Engineering Sci-
ence 222, 8 (2008), 1593–1598.

[19] Geradin, M., and Cardona, A. Kinematics
and dynamics of rigid and flexible mechanisms us-
ing finite elements and quaternion algebra. Com-
putational Mechanics 4, 2 (1988), 115–135.

[20] Gharehchopogh, F. S., and Gholizadeh, H.
A comprehensive survey: Whale optimization al-
gorithm and its applications. Swarm and Evolu-
tionary Computation 48 (2019), 1–24.

[21] Guo, J., Qiu, B., Hu, C., and Zhang, Y.
Discrete-time nonlinear optimization via zeroing
neural dynamics based on explicit linear multi-
step methods for tracking control of robot manip-
ulators. Neurocomputing 412 (2020), 477–485.

[22] Hernandez-Barragan, J., Lopez-Franco,
C., Arana-Daniel, N., Alanis, A. Y., and
Lopez-Franco, A. A modified firefly algorithm
for the inverse kinematics solutions of robotic ma-
nipulators. Integrated Computer-Aided Engineer-
ing 28, 3 (2021), 257–275.

[23] Houcine, L., Bouzbida, M., and Chaari, A.
Improved fuzzy clustering algorithm using adap-
tive particle swarm optimization for nonlinear sys-
tem modeling and identification. Iranian Journal
of Fuzzy Systems 18, 3 (2021), 179–196.

[24] Houssein, E. H., Gad, A. G., Hussain, K.,
and Suganthan, P. N. Major advances in parti-
cle swarm optimization: theory, analysis, and ap-
plication. Swarm and Evolutionary Computation
63 (2021), 100868.

[25] Huang, H.-C., Xu, S. S.-D., and Hsu, H.-S.
Hybrid taguchi dna swarm intelligence for optimal
inverse kinematics redundancy resolution of six-
dof humanoid robot arms. Mathematical Problems
in Engineering 2014 (2014).

[26] Husty, M. L., Pfurner, M., and Schröcker,
H.-P. A new and efficient algorithm for the in-
verse kinematics of a general serial 6r manipula-
tor. Mechanism and machine theory 42, 1 (2007),
66–81.

[27] Joo, D., and Yeom, K. Improved hybrid trajec-
tory tracking algorithm for a 3-link manipulator
using artificial neural network and kalman filter
[j]. International Journal of Mechanical Engineer-
ing and Robotics Research 10, 2 (2021), 60–66.

[28] Kanagaraj, G., Masthan, S. A. R. S., and
Vincent, F. Y. Inverse kinematic solution of ob-
stacle avoidance redundant robot manipulator by
batalgorithms. International Journal of Robotics
and Automation 36, 1 (2021).

[29] Karimi, J., and Pourtakdoust, S. H. Opti-
mal maneuver-based motion planning over terrain
and threats using a dynamic hybrid pso algorithm.
Aerospace Science and Technology 26, 1 (2013),
60–71.

[30] Lafmejani, A. S., Masouleh, M. T., and
Kalhor, A. Trajectory tracking control of a
pneumatically actuated 6-dof gough–stewart par-
allel robot using backstepping-sliding mode con-
troller and geometry-based quasi forward kine-
matic method. Robotics and Computer-Integrated
Manufacturing 54 (2018), 96–114.

[31] MathWorks India. Import rigid body
tree model from urdf file, text, or simscape

53

MENDEL — Soft Computing Journal, Volume 28, No. 1, June 2022, Brno, Czech RepublicX

multibody model - matlab importrobot,
https://in.mathworks.com/help/robotics/

ref/importrobot.html (Accessed 06/2022).

[32] Mirjalili, S., and Lewis, A. The whale opti-
mization algorithm. Advances in engineering soft-
ware 95 (2016), 51–67.

[33] Motoman. Motoman mh5ls ii robot for assembly
& handling — 5.0 kg, https://www.motoman.

com/en-us/products/robots/industrial/

assembly-handling/mh-series/mh5ls-ii

(Accessed 06/2022).

[34] Nearchou, A. C. Solving the inverse kinematics
problem of redundant robots operating in complex
environments via a modified genetic algorithm.
Mechanism and machine theory 33, 3 (1998), 273–
292.

[35] Pluháček, M., Kazikova, A., Kadavy, T.,
Viktorin, A., and Senkerik, R. Relation
of neighborhood size and diversity loss rate in
particle swarm optimization with ring topology.
Mendel 27, 2 (2021), 74–79.

[36] Ram, R., Pathak, P. M., and Junco, S. In-
verse kinematics of mobile manipulator using bidi-
rectional particle swarm optimization by manipu-
lator decoupling. Mechanism and Machine Theory
131 (2019), 385–405.

[37] Rashedi, E., Nezamabadi-Pour, H., and
Saryazdi, S. Gsa: a gravitational search algo-
rithm. Information sciences 179, 13 (2009), 2232–
2248.

[38] Rokbani, N., Casals, A., and Alimi, A. M.
Ik-fa, a new heuristic inverse kinematics solver
using firefly algorithm. In Computational in-
telligence applications in modeling and control.
Springer, 2015, pp. 369–395.

[39] Sadat Asl, A., Fazel Zarandi, M., Sotu-
dian, S., and Amini, A. A fuzzy capacitated
facility location-network design model: A hybrid
firefly and invasive weed optimization (fiwo) so-
lution. Iranian Journal of Fuzzy Systems 17, 2
(2020), 79–95.

[40] Setayandeh, M., and Babaei, A. A novel
method for multi-objective design optimization
based on fuzzy systems. Iranian Journal of Fuzzy
Systems 18, 5 (2021), 181–198.

[41] Shen, D., Tang, L., Hu, Q., Guo, C., Li, X.,
and Zhang, J. Space manipulator trajectory
tracking based on recursive decentralized finite-
time control. Aerospace Science and Technology
102 (2020), 105870.

[42] Tarokh, M., and Zhang, X. An adaptive
genetic algorithm for real-time robotic trajec-
tory tracking. IFAC Proceedings Volumes 39, 15
(2006), 199–204.

[43] Theodoridis, D. C., Boutalis, Y. S., and
Christodoulou, M. A. A new adaptive neuro-
fuzzy controller for trajectory tracking of robot
manipulators. International Journal of Robotics
and Automation 26, 1 (2011), 64.

[44] Thomas, M. J., Sanjeev, M. M., Sudheer,
A., and Joy, M. Comparative study of var-
ious machine learning algorithms and denavit–
hartenberg approach for the inverse kinematic so-
lutions in a 3-ppss parallel manipulator. Indus-
trial Robot: the international journal of robotics
research and application 47, 5 (2020), 683–695.

[45] Van Cuong, P., and Nan, W. Y. Adaptive tra-
jectory tracking neural network control with ro-
bust compensator for robot manipulators. Neural
Computing and Applications 27, 2 (2016), 525–
536.

[46] Wang, G.-G., Chu, H. E., and Mirjalili, S.
Three-dimensional path planning for ucav using
an improved bat algorithm. Aerospace Science and
Technology 49 (2016), 231–238.

[47] Yang, X.-S., and Gandomi, A. H. Bat algo-
rithm: a novel approach for global engineering op-
timization. Engineering computations (2012).

[48] Yarza, A., Santibanez, V., and Moreno-
Valenzuela, J. Uniform global asymptotic sta-
bility of an adaptive output feedback tracking con-
troller for robot manipulators. IFAC Proceedings
Volumes 44, 1 (2011), 14590–14595.

[49] Yin, X., and Pan, L. Enhancing trajectory
tracking accuracy for industrial robot with ro-
bust adaptive control. Robotics and Computer-
Integrated Manufacturing 51 (2018), 97–102.

[50] Yin, X., Pan, L., and Cai, S. Robust adap-
tive fuzzy sliding mode trajectory tracking con-
trol for serial robotic manipulators. Robotics and
Computer-Integrated Manufacturing 72 (2021),
101884.

[51] Younis, M. T., and Yang, S. Genetic algorithm
for independent job scheduling in grid computing.
In Mendel (2017), vol. 23, pp. 65–72.

[52] Zhao, Y. M., Lin, Y., Xi, F., and Guo,
S. Calibration-based iterative learning control for
path tracking of industrial robots. IEEE Transac-
tions on industrial electronics 62, 5 (2014), 2921–
2929.

[53] Zorić, N. D., Lazarević, M. P., and Si-
monović, A. M. Multi-body kinematics and dy-
namics in terms of quaternions: Langrange for-
mulation in covariant form: Rodriguez approach.
FME Transactions 38, 1 (2010), 19–28.

54

https://in.mathworks.com/help/robotics/ref/importrobot.html
https://in.mathworks.com/help/robotics/ref/importrobot.html
https://www.motoman.com/en-us/products/robots/industrial/assembly-handling/mh-series/mh5ls-ii
https://www.motoman.com/en-us/products/robots/industrial/assembly-handling/mh-series/mh5ls-ii
https://www.motoman.com/en-us/products/robots/industrial/assembly-handling/mh-series/mh5ls-ii

	Introduction
	Problem Description
	Problem Statement

	Proposed Methodology
	Particle Swarm Optimization (PSO)
	Bat Algorithm (BAT)
	Gravitational Search Algorithm (GSA)
	Whale Optimization Algorithm (WOA)
	Algorithm Parameters
	Framework
	Solution Representation and Fitness Evaluation

	Results and Discussions
	Trajectory Following Testing
	Convergence Testing
	Singularity Testing
	Comparison using Wilcoxon test

	Conclusion

