
MENDEL — Soft Computing Journal, Volume 28, No. 1, June 2022, Brno, Czech RepublicX

ISSN: 1803-3814 (Printed), 2571-3701 (Online) 
https://doi.org/10.13164/mendel.2022.1.023

Grouped Pointwise Convolutions Reduce Parameters in Convolutional Neural
Networks

Joao Paulo Schwarz Schuler1,� Santiago Romani1,Mohamed Abdel-Nasser1,2, Hatem
Rashwan1, Domenec Puig1

1DEIM, Universitat Rovira i Virgili, Spain
2Electrical Engineering Department, Aswan University, Aswan, Egypt

joaopaulo.schwarz@estudiants.urv.cat�, santiago.romani@urv.cat, mohamed.abdelnasser@urv.cat, hatem.abdellatif@urv.cat,
domenec.puig@urv.cat

Abstract
In Deep Convolutional Neural Networks (DCNNs), the parameter count in point-
wise convolutions quickly grows due to the multiplication of the filters and input
channels from the preceding layer. To handle this growth, we propose a new tech-
nique that makes pointwise convolutions parameter-efficient via employing parallel
branching, where each branch contains a group of filters and processes a fraction of
the input channels. To avoid degrading the learning capability of DCNNs, we pro-
pose interleaving the filters’ output from separate branches at intermediate layers
of successive pointwise convolutions. To demonstrate the efficacy of the proposed
technique, we apply it to various state-of-the-art DCNNs, namely EfficientNet,
DenseNet-BC L100, MobileNet and MobileNet V3 Large. The performance of
these DCNNs with and without the proposed method is compared on CIFAR-10,
CIFAR-100, Cropped-PlantDoc and Oxford-IIIT Pet datasets. The experimental
results demonstrated that DCNNs with the proposed technique, when trained from
scratch, obtained similar test accuracies to the original EfficientNet and MobileNet
V3 Large architectures while saving up to 90% of the parameters and 63% of the
floating-point computations.

Keywords: Deep Learning, Deep Convolutional Neural Networks, Interleaving,
Grouped Convolution, Image Classification.

Received: 01 February 2022
Accepted: 26 April 2022

Online: 27 April 2022
Published: 30 June 2022

1 Introduction

A grouped convolution in DCNNs divides input chan-
nels and filters into groups. Each group of filters can
be understood as an independent (parallel) path for in-
formation to flow. Instead of processing all input chan-
nels, in a grouped convolution, each filter processes
only input channels belonging to the same group. This
grouping reduces the number of weights in each filter
and consequently the number of floating-point compu-
tations. Notably, 1x1 filters with one trainable param-
eter per input channel compose pointwise convolution.
Unlike (spatial) 3x3 convolutional filters, these filters
do not consider surrounding positions.

This paper proposes an efficient method to optimize
any DCNN architecture by grouping pointwise convo-
lutions found in its original design. Besides, we propose
interleaving the filters’ output from separate groups
at intermediate levels of successive pointwise convolu-
tions to prevent diminishing the learning power of DC-
NNs. The resulting architecture is highly parameter-
efficient and performs well at training from scratch
with datasets that contain few image samples. This ar-
chitecture also requires less floating point operations.
For instance, in the context of plant disease classifica-
tion, the Cropped-PlantDoc dataset [16] contains less

than 10 thousand images. It should be noted that
the Cropped-PlantDoc dataset is prone to overfitting
when using classical heavy DCNN architectures as a
consequence of the small sample count. We demon-
strate that the proposed pointwise convolution opti-
mization can significantly reduce the number of param-
eters of DCNNs while performing better than the base-
line models when training them with low sample count
datasets. Our previous study in [13] showed that the
pointwise convolution optimization technique could en-
hance the efficiency of EfficientNets. The present study
demonstrates that the proposed pointwise convolution
optimization technique can be applied to most state-
of-the-art DCNN architectures. It is worth noting that
achieving the state-of-the-art classification accuracy on
any image classification dataset is out of the scope of
this paper, as we focus on DCNN optimization.

This is how this article is organized: Section 2
introduces and examines relevant work on DCNNs,
parameter-efficient DCNNs, and the datasets used in
this study. The proposed pointwise convolution op-
timization is explained in Section 3. Sections 4 and
5 provide the experimental results, comparisons and
discussion, respectively. The paper is summarized in
Section 6.

23



MENDEL — Soft Computing Journal, Volume 28, No. 1, June 2022, Brno, Czech RepublicX

2 Related work

One decade ago, Krizhevsky et al. [9] proposed the
AlexNet architecture that achieved a breakthrough in
the ImageNet Large Scale Visual Recognition Chal-
lenge. AlexNet architecture contains 5 convolutional
layers and 3 dense layers. Since then, numerous
DCNN architectures, such as ZFNet [20], VGG [15],
GoogLeNet [17], ResNet [3] and DenseNet [6] have been
presented. Such models are commonly called ”Deep
Learning” or DCNN as the number of convolutional
layers has expanded from 5 to more than 200.

In 2013, Min Lin et al. introduced the Network
in Network architecture (NiN)[10]. This architecture
contains 3 spatial convolutional layers with 192 filters
each, interspersed with pairs of pointwise convolutional
layers. The pairs of pointwise convolutions allow the
network to learn complex patterns without the compu-
tational cost of a spatial convolution.

They were able to attain state-of-the-art classifi-
cation accuracies in the CIFAR-10 and CIFAR-100
datasets[8] when their work was released.

In 2016, ResNet was introduced. Resnet [3] stacks up
to 152 layers with similar topology. Inspired on VGG
[15], all ResNet spatial convolutions have 3x3 filters.
The authors of ResNet conjectured that deeper CNNs
have exponentially low convergence rates. To tackle
this problem, they propose skip connections every 2
convolutional layers.

In 2017, Ioannou et al. [7] tested grouped convo-
lutions with various groups per layer (2, 4, 8, and
16) with the image classification using the CIFAR-10
dataset. Working towards optimization for the NiN
architecture, Ioannou et al. showed that grouping 3x3
and 5x5 spatial convolutions could decrease the number
of parameters by more than 50% when optimizing the
NiN architecture. They also demonstrated that their
proposed architectures, divided into numerous paths
(i.e., groups), may maintain or slightly increase the
classification accuracy. Of note, there was no attempt
to separate the 1x1 pointwise convolutional layers in
their study. Ioannou at. also worked on an optimized
ResNet-50 variant by replacing the original spatial con-
volutions by up to 64 parallel groups. This reduces
the number of parameters by 27% and the number of
floating-point operations by 37%, while keeping simi-
lar classification accuracy on ImageNet dataset. They
observed that it is unlikely that every filter depends on
the all output channels coming from the previous layer.
This observation is very fundamental to our work, as
we use it support the idea that grouped convolutions
can be as effective as non-grouped filters connected to
all incoming channels.

Also in 2017, an improvement for ResNet called
ResNeXt[19] was introduced. However, ResNeXt re-
places the spatial convolutions by parallel paths, thus
reducing the number of parameters. When ResNeXt
variants are configured to a similar number of param-
eters to their original ResNet architectures, ResNeXt
variants achieve higher classification accuracy on the

ImageNet [12] dataset. In the ResNeXt architec-
ture, the building blocks follow a split-transform-merge
paradigm. Although the transforming step is done
via parallel spatial convolutions, the splitting and the
merging are done by standard (ungrouped) pointwise
convolutions.

Howard et al. [5] proposed an architecture called
MobileNet. The depthwise separable convolution is an
essential component of MobileNet. A depthwise convo-
lution precedes a pointwise convolution in this build-
ing block. In comparison to prior models, MobileNets
are parameter efficient. MobileNet-160, for instance,
has roughly 45 times fewer parameters than AlexNet
but achieves equal classification performance when us-
ing the ImageNet dataset. MobileNet-224 has roughly
40% fewer parameters than GoogLeNet yet obtained
greater accuracy. According to Howard et al., their
smaller models need minor data augmentation. An
observation of MobileNet models that is crucial to our
approach is that pointwise convolutions account for al-
most 75% of the parameters and 95% of floating-point
computations. This architecture is an excellent candi-
date for our proposal as our proposal saves parameters
and computations along pointwise convolutions. Later,
in 2019, [4] an improved version of MobileNet was in-
troduced, named as V3, still based on depthwise and
pointwise convolutions, but pointwise convolutions re-
mained not grouped.

Zhang et al. [21] mixed grouped convolutions
with interleaving layers. Specifically, they proposed a
grouped spatial convolution followed by an interleaving
layer and a grouped pointwise convolution. The main
difference between [21] and our technique is that we
target replacing pointwise convolutions.

In [18], Tan et al. proposed the EfficientNet archi-
tecture. Their EfficientNet-B7 model was 8.4 times
more parameter-efficient and 6.1 times faster than the
best architecture at the time, with an ImageNet top-1
accuracy of 84.3%. More than 80% of the parameters
in EfficientNets come from standard pointwise convo-
lutions, as well as in MobileNets, which allows for a
significant decrease in the number of parameters and
floating-point operations, which we have taken advan-
tage of in this study.

It should be noted that the following four image clas-
sification datasets are considered in this study:

• The Oxford-IIIT Pet dataset [11]: it includes
images of 25 breeds of dogs (i.e., 25 classes) and 12
breeds of cats (i.e., 12 classes). There are a total
of 37 image classes. There are approximately 200
images in each class. Of note, all images come
in various sizes and contain intricate backgrounds
and lighting patterns.

• The CIFAR-10 dataset [8]: it has 60 thousand
32x32 images of 10 classes (dog, airplane, truck,
cat, automobile, bird, horse, deer, frog, and ship).
These images were captured in a natural, uncon-
trolled lighting condition. They only have one vis-
ible instance of the object that the class refers to.

24



Split

K1
(Fi /Ni)

K2
(Fi /Ni)

L1
(Fi /Ni)

L2
(Fi /Ni)

Interleave

Hi-1·Wi-1·Ci-1 /Ni

Hi·Wi·Ci /Ni

Concat

Hi·Wi·Ci

Hi-1·Wi-1·Ci-1

Concat

Sum

Hi·Wi·Ci

KNi
(Fi /Ni)

...

LNi
(Fi /Ni)

...

...

Hi·Wi·Ci

Hi·Wi·Ci /Ni

M
(Fi)

Hi-1·Wi-1·Ci-1

Hi ·Wi ·Ci

K

L

Figure 1: Diagram of the proposed pointwise convolution optimization. (Left) a classic monolithic layer M with
Fi pointwise filters. (Right) our proposed replacement for M. It comprises two grouped pointwise convolutional
layers (K and L) with Ni groups, where each group consists of Fi/Ni filters. H, W, and C represent the height,
width, and number of channels. The size of the activation maps (represented by arrows) equals H ×W ×C. In
some cases, the activation map size is divided by the number of groups Ni. The i subindex stands for the layer
depth. In the case of pointwise convolutions, Hi=Hi−1, Wi=Wi−1 and Ci=Fi.

The objects are sometimes partially obscured or
viewed from an unexpected angle.

• The CIFAR-100 dataset[8]: it is similar to the
CIFAR-10 dataset, but it has 100 classes instead
of 10. It contains 60 thousand 32x32 images rep-
resenting the 100 classes (e.g., machines, plants,
animals, and people).

• The Cropped-PlantDoc dataset [16]: it was
developed for conducting research on plant leaf
disease classification. It was formed by cropping
individual leaves from the PlantDoc dataset that
includes multiple leaves per image. The Cropped-
PlantDoc dataset contains 13 plant species and
27 classes. Notably, in this dataset, images have
heterogeneous backgrounds and the leaves signifi-
cantly differ in sizes.

Together, the above 4 datasets bring a variety of ob-
ject classes that help assess the efficacy of the proposed
technique. They are compact datasets and enable easy
replication of our proposal using low-cost technology
and little computation time.

Some of our experiments output class activation
maps (CAMs) [22]. The class activation map method
finds image regions used by a CNN to classify an im-
age. Regions that are relevant for the classification are
shown from red (more relevant) to blue (less relevant).
This method can be used when the last 2 layers of a
CNN are a global average pooling and a dense layer.
The CAM is calculated from the activation maps pre-

ceding the global average pooling and the weights re-
lated to the activated image class (filter).

3 Methodology

More than 80% of the parameters in the most recent
DCNN architectures are found in pointwise convolu-
tions. Each filter in typical pointwise convolutions has
one trainable parameter per input channel. Accord-
ingly, the parameters count P in layer i is computed
from the channel count of the prior activation map
Ci−1 and the filters count Fi as expressed in Eq. (1),
where Fi is the total number of filters as found in the
original monolithic pointwise convolution layer:

Pi = Ci−1 · Fi (1)

We propose a method to make pointwise convolu-
tions parameter-efficient. Figure 1 presents the archi-
tecture of our proposed optimization. This architec-
ture starts with a pointwise grouped convolution layer
K (composed by filter groups K1 to KNi) followed by
a channel interleaving layer that fuses channels for the
subsequent pointwise grouped convolution layer L (fil-
ter groups L1 to LNi

). At the right of our architecture,
all channels from groups K1 to KNi

are concatenated
into one path. It is worth noting that the same process
occurs for the L layer. The K and L layers’ concate-
nated outputs are summed channel by channel, making
the L layer act as a residual convolution.



MENDEL — Soft Computing Journal, Volume 28, No. 1, June 2022, Brno, Czech RepublicX

Indeed, grouped convolutions inherently face a limi-
tation: each parallel group of filters computes its out-
put from their own set of input channels, preventing
channels connected to different groups to be combined
with each other. To alleviate this limitation, we inter-
leave the channels computed by the first grouped point-
wise convolution K. This allows each group of the sec-
ondary grouped convolution L to compute data coming
from more than one group from the preceding K layer.

Besides, we propose that the output of both grouped
convolutions K and L be joined via a summation. Sum-
mation has the advantage of not raising the number of
output channels compared to concatenation. It also al-
lows the network to learn patterns straight on the first
convolution K, skipping the L convolution filters.

Let us note the number of groups in layer i as Ni for
grouped convolutions. This number is calculated ac-
cording to our algorithm, that will be stated below.
Each group is fed a subset of Ci−1/Ni input chan-
nels. The number of filters per group is Fi/Ni. Ac-
cordingly, the multiplication of the number of the fil-
ters per group and the number of channels per group
(Fi/Ni) ·(Ci−1/Ni) gives the number of parameters per
group. The total number of parameters of a grouped
convolutional layer can be calculated by multiplying
(Fi/Ni) · (Ci−1/Ni) by the number of groups Ni, as
expressed in Eq. (2):

Pi = (Ci−1 · Fi)/Ni (2)

Eq. (2) shows that the number of trainable parame-
ters is inversely proportional to the number of groups.
It should be mentioned that we follow the constraints
listed below when calculating the number of groups per
convolution Ni:

• Each group must have a minimum number of in-
put channels ch. This is the minimum number of
input channels that can be operated together by
each parallel group across all optimized pointwise
convolutions.

• The greatest common divisor of Ci−1 and Fi de-
termines the number of groups Ni, as long as it
respects the previous constraint (Ci−1/Ni ≥ ch).

• The number of groups must be bigger than 1 (Ni ≥
1).

For each pointwise convolutional layer in the original
architecture, if there is no solution to the above con-
straints, then the original layer is left as is, without
applying the optimization.

An interleaving layer is added when there are two
or more output channels (filters) per group (Fi/Ni ≥
2). The interleaving is intended to mix channels from
the L convolution so any 2 channels from the same
group are not placed together. When there is only one
output channel per parallel group, the interleaving is
not required.
A grouped pointwise convolutional layer L is added

after the interleaving layer, when the number of input
channels (Ci−1 ≥ Ci) is greater than or equal to the
number of output channels. The result of both grouped

convolutional layers K and L are then added. When the
number of input channels is smaller than the number
of output channels, there is less chance of input infor-
mation being lost due to a lack of output channels. In
this case, the extra learning capacity supplied by the
secondary L grouped convolution is not as important.
As a result, we do not utilize an L layer in this case.

To understand how the proposed technique can re-
duce the number of parameters, let us assume that we
have a monolithic pointwise convolution with Ci−1 =
1, 024 and Fi = 512, which produces Pi = 524, 288
parameters. By substituting this pointwise convolu-
tion with the proposed sub-architecture, employing 16
channels per group, the number of groups will be the
number of input channels (1,024) divided by the num-
ber of channels per group (16) resulting into Ni = 64
groups. In this example, the K grouped convolu-
tional layer will have 1, 024 · 512/64 = 8, 192 param-
eters. In the L grouped convolutional layer, the num-
bers of groups and channels are 64 and 512, respec-
tively. Consequently, the number of parameters will
be 512 ·512/64 = 4, 096. When these values are added,
the total number of parameters for the entire sub-
architecture is 8, 192 + 4, 096 = 12, 288, representing
a parameter saving of 97.7%.

The proposed DCNNs variants are deeper than their
original counterparts as we add up to 2 convolutions
where originally we find one. In contrary to the work of
Ting Zhang et. al. [21], besides that we don’t have spa-
cial convolutions, we sum the outputs of both grouped
convolutions via a skip connection. This added skip
connection counter balance the difficulty for gradients
to flow in deeper architectures. We also calculate the
number of parallel groups in a way that can be ap-
plied to any pointwise convolution from any existing
architecture. In our proposal, the number of parallel
groups vary according to the number of input channels
and filters instead of being a constant number.

We tested our optimization by replacing origi-
nal pointwise convolutions in the EfficientNet-B0,
DenseNet-BC L100, Inception V3, MobileNet and
MobileNet V3 Large architectures. We name our
modified versions as kEffNet-B0, kDenseNet-BC
L100, kMobileNet, kMobileNet V3, respectively.
EfficientNet-B0, DenseNet-BC L100, and MobileNets
were selected for their parameter efficiency, so we can
test our ideas on already efficient architectures. In
the original architectures, when the last convolutional
layer has an 1x1xC activation map as input shape,
it is left unmodified as it behaves as a dense layer
for the final classification. For the kEffNet-BO, we
tested an additional modification that skips the first
4 convolutional strides, which allows input images
with 32x32 pixels instead of the original resolution of
224x224 pixels.

We performed our experiments with various
hardware configurations with NVIDIA graphics
cards. Regarding software, we worked with K-
CAI/Keras/Tensorflow 2.* [14, 2, 1] and RMSProp

26



MENDEL — Soft Computing Journal, Volume 28, No. 1, June 2022, Brno, Czech RepublicX

Schuler et al.:Grouped Pointwise Convolutions Reduce Parameters in Convolutional Neural Networks

optimizer. All of our experiments have a cyclical
learning rate of 25 epochs and data augmentation.
For the CIFAR-10 and CIFAR-100 datasets, we used
50 epochs. For the Oxford-IIIT Pet and the Cropped
PlantDoc datasets, we trained for 150 and 75 epochs,
respectively. To compensate the limited number of
images in these datasets, we trained the DCNNs for
more than 50 epochs. It is worth noting that the
number of epochs is a multiple of our learning rate
cycle, which is 25. In this study, we did not employ
transfer learning as our main objective is to assess
the learning capacity of parameter-efficient DCNNs
models. 1

4 Experimental Results

In this section, we analyze test classification accuracy
and class activation maps.

4.1 Analyzing Classification Accuracy

Table 1 compares test accuracies, number of train-
able parameters, number of floating-point computa-
tions and a percentage of the original number of train-
able parameters and computations with the CIFAR-10
experiments. Our variant names always start with a
character k. We add the minimum number of input
channels per group to the end of the name of our im-
plementations. As an example, kEffNet-B0 32ch has a
minimum of 32 input channels per group. Regarding
test accuracy, at least one of our variants for Efficient-
Net, Inception V3 and MobileNet V3 Large achieve
higher accuracy than their respective baseline models.
For the MobileNet, we have a close result to its base-
line. Our DenseNet variants underperform the original
DenseNet-BC L100. Our variant with smallest num-
ber of parameters that outperforms its baseline is Mo-
bileNet V3 Large 32ch. It has a significant reduction
of 83% of the trainable parameters and requires 54%
of the computations of the original model. Our second
smallest architecture that outperform its baseline is the
kEffNet-B0 32ch with 32x32 pixels input resolution. It
has 26% of the original parameters and requires 35%
of the original computations.

In Table 1, overall, our variant that achieves high-
est classification accuracy is kEffNet-B0 32ch with
224x224 pixels input image resolution. It achieves
slightly higher classification accuracy than its baseline,
which empirically proves that our reduction algorithm
is working as well as its baseline with a fraction of the
original resources, i.e., 26% of the trainable parameters
and 45% of the computations. The proportion of com-
putations/trainable parameters differ across layers. In
general, convolutional layers have more floating point
computations per parameter than dense layers. Also,
in convolutional layers, the number of computations is
proportional to the input resolution. This is why a

1Our source code is publicly available at https://github.

com/joaopauloschuler/kEffNetV1/.

saving in parameters doesn’t exactly result in a pro-
portional saving in computations.

The two best performing variants kEffNet-B0 and
kMobileNet V3 in Table 1 were retested with CIFAR-
100, Cropped PlantDoc and Oxford-IIIT Pet datasets
as per Tables 2, 3 and 4 respectively.
In our Cropped PlantDoc experimentation shown in

the Table 3, we obtained the highest accuracy with
kEffNet-B0 32ch (65.74%) followed by kMobileNet V3
Large 32ch (65.34%). In this table, all of our vari-
ants achieved higher test accuracies than their base-
lines. Our kMobileNet V3 Large 16ch has only 10%
of the original trainable parameters, 37% of the orig-
inal computations and achieves higher accuracy by a
margin of 15%. Our kEffNet-B0 16ch has 16% and
33% of the original trainable parameters and compu-
tations respectively. It achieves a higher accuracy than
its baseline by a margin of 0.5%.

In our Oxford-IIIT Pet dataset experimentation
shown in Table 4, we obtained highest accuracy with
kEffNet-B0 16ch (64.56%) followed by kMobileNet V3
Large 32ch (63.09%). We speculate that this result
is consequence of overfitting due to a small training
dataset. In all other tested datasets, the 32ch variant
achieves higher accuracy than its 16ch related variant.

4.2 Class Activation Maps

Figure 2 shows CAMs made with the Oxford-IIIT Pet
dataset. Our kEffNet-B0 focuses on face, ears and the
top of the head. In turn, the EfficientNet-B0 baseline
has its focus more frequently in the background.

Figure 3 shows the CAMs of the baseline and
our kEffNet-B0. In these cat images, both models
have some focus on areas of the background although
kEffNet still does a better job at focusing on the cat.

5 Discussion

Indeed, the best performing optimized architectures
are based on EfficientNet, MobileNet and MobileNet
V3. These 3 architectures share a characteristic in
common that explain why our optimization fits well:
in the original architectures, the main convolutions are
parameter efficient depthwise convolutions and param-
eter inefficient pointwise convolutions. Given that our
replacement is designed specifically for reducing excess
of connections in pointwise convolutions, we apply our
optimization at the precise weak point from the origi-
nal architectures.

The variants derived from DenseNet-BC L100 under-
performed the original model. In DenseNet-BC, most
pointwise convolutions are followed by standard con-
volutions that intermix all input channels. The added
complexity from our architecture to intermix channels
becomes redundant as this is done via standard convo-
lutions in the original architecture. This extra redun-
dancy adds complexity and parameters, which becomes
a drawback more than an advantage for the training
process.

27

https://github.com/joaopauloschuler/kEffNetV1/
https://github.com/joaopauloschuler/kEffNetV1/


MENDEL — Soft Computing Journal, Volume 28, No. 1, June 2022, Brno, Czech RepublicX

Table 1: CIFAR-10 testing results after 50 epochs. % columns indicate parameters and computation percentages
to their original models.

architecture input size params % computations % test acc.
EfficientNet-B0 224x244 4.02M 389.9M 93.52%
kEffNet-B0 16ch 224x224 0.64M 16% 129.0M 33% 92.24%
kEffNet-B0 32ch 224x224 1.06M 26% 174.5M 45% 93.75%
kEffNet-B0 16ch 32x32 0.64M 16% 84.8M 22% 92.46%
kEffNet-B0 32ch 32x32 1.06M 26% 138.4M 35% 93.61%

DenseNet-BC L100 32x32 0.77M 288.0M 92.38%
kDenseNet-BC L100 12ch 32x32 0.35M 45% 138.2M 48% 90.83%
kDenseNet-BC L100 24ch 32x32 0.38M 50% 159.6M 55% 90.63%

Inception V3 224x224 21.79M 2.8B 88.29%
kInception V3 16ch 224x224 14.88M 68% 2.3B 81% 91.10%
kInception V3 32ch 224x224 15.01M 69% 2.3B 81% 91.22%

MobileNet 224x224 3.22M 567.8M 93.15%
kMobileNet 16ch 224x224 0.24M 8% 92.0M 16% 89.81%
kMobileNet 32ch 224x224 0.40M 13% 153.8M 27% 91.27%
kMobileNet 64ch 224x224 0.72M 22% 251.8M 44% 92.08%
kMobileNet 128ch 224x224 1.32M 41% 201.4M 35% 93.02%

MobileNet V3 Large 224x224 4.21M 217.5M 92.80%
kMobileNet V3 Large 16ch 224x224 0.40M 10% 81M 37% 92.74%
kMobileNet V3 Large 32ch 224x224 0.71M 17% 117.3M 54% 93.26%

Table 2: CIFAR-100 results after 50 epochs. % columns indicate parameters and computations percentages to
their original models.

architecture input size params % computations % test acc.
EfficientNet-B0 224x244 4.14M 390.1M 74.23%
kEffNet-B0 16ch 224x224 0.75M 18% 129.1M 33% 71.92%
kEffNet-B0 32ch 224x224 1.17M 28% 174.6M 45% 73.93%

MobileNet V3 Large 224x224 4.33M 217.6M 70.73%
kMobileNet V3 Large 16ch 224x224 0.52M 12% 81.1M 37% 71.36%
kMobileNet V3 Large 32ch 224x224 0.83M 19% 117.4M 54% 73.24%

Table 3: Cropped PlantDoc testing results after 75 epochs. % columns indicate parameters and computations
percentages to their original models.

architecture input size params % computations % test acc.
EfficientNet-B0 224x244 4.04M 390.0M 63.50%
kEffNet-B0 16ch 224x224 0.66M 16% 129.0M 33% 64.04%
kEffNet-B0 32ch 224x224 1.08M 27% 174.5M 45% 65.74%

MobileNet V3 Large 224x224 4.24M 217.5M 46.45%
kMobileNet V3 Large 16ch 224x224 0.43 10% 81.0M 37% 61.65%
kMobileNet V3 Large 32ch 224x224 0.74M 17% 117.3M 54% 65.34%

Table 4: Oxford-IIIT Pet testing results after 150 epochs. % columns indicate parameters and computations
percentages to their original models.

architecture input size params % computations % test acc.
EfficientNet-B0 224x244 4.11M 390.0M 62.05%
kEffNet-B0 16ch 224x224 0.67M 17% 129.0M 33% 64.56%
kEffNet-B0 32ch 224x224 1.09M 27% 174.53M 45% 62.92%

MobileNet V3 Large 224x224 4.24M 217.5M 52.21%
kMobileNet V3 Large 16ch 224x224 0.36M 10% 81.0M 37% 60.39%
kMobileNet V3 Large 32ch 224x224 0.74M 18% 117.3M 54% 63.09%

The proposed pointwise replacement does not di-
rectly explain why we obtained better classification
accuracy with Cropped-PlantDoc or with the Oxford-
IIIT Pet datasets. As we have less trainable param-

eters, our modified kEffNets are likely less prone to
overfitting. In the case of CIFAR-10, the baseline and
our modified kEffNet models obtained approximately
the same test classification. Our optimization tech-

28



MENDEL — Soft Computing Journal, Volume 28, No. 1, June 2022, Brno, Czech RepublicX

Schuler et al.:Grouped Pointwise Convolutions Reduce Parameters in Convolutional Neural Networks

Figure 2: CAMs for images taken from the Oxford-IIIT Pet dataset. (left) CAMs produced by kEffNet-B0 with
the proposed pointwise optimization technique. (right) CAMs produced by the EfficientNet-B0 baseline.

nique effectively saves unnecessary connections along
the original pointwise convolutions. In contrast, with
CIFAR-10, both models (baseline and reduced version)
are not excessively degraded by overfitting.

Generated CAMs demonstrated that the baseline
tends to focus attention on the background of the im-
ages, which may not necessarily be a consequence of
overfitting. It may be possible that background fea-
tures appear more frequently in some image classes
than others. The extra parameters of the baselines
might be used for these background features.

6 Conclusion

This work presented a parameter and computation-
ally efficient replacement for pointwise convolutions.
Specifically, we proposed substituting pointwise convo-
lutions with a sub-architecture comprising two grouped
convolutions (K and L) with interleaving and summa-
tion layers. As an example, the pointwise convolu-
tion optimization of EfficientNet-B0, called kEffNet-
B0 32ch, saves 74% of the trainable parameters and
55% of the floating-point computations compared to
its baseline. On the CIFAR-10 dataset, our optimized
architecture achieves a slightly higher classification ac-

29



MENDEL — Soft Computing Journal, Volume 28, No. 1, June 2022, Brno, Czech RepublicX

Figure 3: CAMs showing image samples which architectures do not focus on the cat. (left) CAMs produced by
kEffNet-B0 with the proposed pointwise optimization technique. (right) CAMs produced by the EfficientNet-B0
baseline.

curacy than the baseline, when trained from scratch.
At the light of this and other results shown above, we
conclude that the number of connections (parameters)
in pointwise convolutions can be significantly reduced
without sacrificing any of the original learning capac-
ity. Therefore, we can deduce that most of the original
connections in pointwise filters are redundant.

In other specific experiments, we obtained higher
accuracy with the Cropped-PlantDoc (+2.24%) and
Oxford-IIIT Pet datasets (+1.04%) compared to our
baselines. On the CIFAR-100 dataset, our kEffNet-
B0 32ch achieved slightly lower classification accuracy
(-0.3%) with significantly less parameters (-72%) and
floating-point computations (-55%). This results indi-
cate that our optimization works better on architec-
tures with a mix of depthwise and pointwise convo-
lutions such as MobileNet, MobileNet V3 Large, and
EfficientNet architectures.

Our experiments confirmed our working hypothesis:
to achieve a reasonable degree of pattern recognition,
not all input channels need to be connected in every
pointwise filter. Parallel groups of pointwise filters can
gather subsets of features for proper and efficient image
classification.

References

[1] Abadi, M., et al. TensorFlow: Large-scale ma-
chine learning on heterogeneous systems, 2015.
Software available from tensorflow.org.

[2] Chollet, F., et al. Keras. https://keras.io,
2015.

[3] He, K., Zhang, X., Ren, S., and Sun, J. Deep
residual learning for image recognition. In Pro-
ceedings of the IEEE conference on computer vi-
sion and pattern recognition (2016), pp. 770–778.

[4] Howard, A., et al. Searching for mobilenetv3.
In Proceedings of the IEEE/CVF International
Conference on Computer Vision (2019), pp. 1314–
1324.

[5] Howard, A. G., et al. Mobilenets: Efficient
convolutional neural networks for mobile vision
applications. arXiv preprint arXiv:1704.04861
(2017).

[6] Huang, G., Liu, Z., Van Der Maaten, L.,
and Weinberger, K. Q. Densely connected
convolutional networks. In Proceedings of the
IEEE conference on computer vision and pattern
recognition (2017), pp. 4700–4708.

[7] Ioannou, Y., Robertson, D., Cipolla, R.,
and Criminisi, A. Deep roots: Improving cnn ef-

30

https://keras.io


MENDEL — Soft Computing Journal, Volume 28, No. 1, June 2022, Brno, Czech RepublicX

Schuler et al.:Grouped Pointwise Convolutions Reduce Parameters in Convolutional Neural Networks

ficiency with hierarchical filter groups. In Proceed-
ings of the IEEE conference on computer vision
and pattern recognition (2017), pp. 1231–1240.

[8] Krizhevsky, A. Learning multiple layers of fea-
tures from tiny images. Tech. rep., University of
Toronto, 2009.

[9] Krizhevsky, A., Sutskever, I., and Hinton,
G. E. Imagenet classification with deep convolu-
tional neural networks. Advances in neural infor-
mation processing systems 25 (2012).

[10] Lin, M., Chen, Q., and Yan, S. Network in
network, 2014.

[11] Parkhi, O. M., Vedaldi, A., Zisserman, A.,
and Jawahar, C. Cats and dogs. In 2012 IEEE
conference on computer vision and pattern recog-
nition (2012), IEEE, pp. 3498–3505.

[12] Russakovsky, O., et al. Imagenet large scale
visual recognition challenge. International journal
of computer vision 115, 3 (2015), 211–252.

[13] Schuler, J., Romańı, S., Abdel-nasser, M.,
Rashwan, H., and Puig, D. Grouped Pointwise
Convolutions Significantly Reduces Parameters in
EfficientNet. 10 2021, pp. 383–391.

[14] Schuler, J. P. S. K-cai neural api, 2021.
https://doi.org/10.5281/zenodo.5810092.

[15] Simonyan, K., and Zisserman, A. Very
deep convolutional networks for large-scale im-
age recognition. arXiv preprint arXiv:1409.1556
(2014).

[16] Singh, D., Jain, N., Jain, P., Kayal, P., Ku-
mawat, S., and Batra, N. Plantdoc: A dataset
for visual plant disease detection. In Proceedings
of the 7th ACM IKDD CoDS and 25th COMAD
(2020), pp. 249–253.

[17] Szegedy, C., et al. Going deeper with con-
volutions. In Proceedings of the IEEE conference
on computer vision and pattern recognition (2015),
pp. 1–9.

[18] Tan, M., and Le, Q. Efficientnet: Rethinking
model scaling for convolutional neural networks.
In International conference on machine learning
(2019), PMLR, pp. 6105–6114.

[19] Xie, S., Girshick, R., Dollár, P., Tu, Z.,
and He, K. Aggregated residual transformations
for deep neural networks. In Proceedings of the
IEEE conference on computer vision and pattern
recognition (2017), pp. 1492–1500.

[20] Zeiler, M. D., and Fergus, R. Visualizing
and understanding convolutional networks. In
European conference on computer vision (2014),
Springer, pp. 818–833.

[21] Zhang, T., Qi, G., Xiao, B., and Wang, J. In-
terleaved group convolutions for deep neural net-
works. arXiv preprint arXiv:1707.02725 (2017).

[22] Zhou, B., Khosla, A., Lapedriza, A., Oliva,
A., and Torralba, A. Learning deep features
for discriminative localization.

31


	Introduction
	Related work
	Methodology
	Experimental Results
	Analyzing Classification Accuracy
	Class Activation Maps

	Discussion
	Conclusion



